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ABSTRACT

This document outlines a blueprint for an open-source data center monitoring and
observability platform, based on Apeiro Reference Architecture.

Designed to address the evolving operational challenges faced by modern data center
operators. Recognizing the increasing demands for efficiency, real-time insight, and
scalable infrastructure management, the proposed solution targets the granular
monitoring of individual racks through Telemetry devices, including Embedded
Monitoring Units, intelligent Power Distribution Units, and environmental sensors.

It emphasizes real-time data collection and analysis, SNMP-based monitoring at the
socket level, and comprehensive environmental oversight. Integration with industry-
standard tools such as OpenTelemetry, CMDB, data lakes, and ticketing systems
ensures streamlined incident response, enhanced interoperability, and sustainability.

By overcoming common limitations like scalability constraints and vendor lock-in, this
approach delivers improved reliability, performance, and operational visibility for data
centers of varying scale and complexity.

1.Introduction

Modern data centers must prioritize operational efficiency, real-time monitoring, and
scalability to manage increasing complexity. Key components like Embedded Monitoring
Units, intelligent PDUs, and environmental sensors are vital for reliable power
distribution and maintaining optimal conditions. However, current DCIM solutions often
face issues such as limited scalability, vendor lock-in, and compatibility challenges,
which can hinder proactive infrastructure management.

This blueprint presents an open-source monitoring platform designed for data center
operators, focused on individual racks with telemetry devices (management points,
PDUs, sensors).

Key features include:

e Real-time operational data collection and analysis

e SNMP-based monitoring of EMUs and PDUs at the socket level
e Environmental tracking for temperature and humidity

e Integration with CMDB, data sinks and ticketing systems

The following sections will address core operational monitoring and control challenges
in modern data centers.



1.1 Challenges

Modern data centers are rapidly evolving due to technological, regulatory, sustainability,
and accountability pressures. They now operate as transparent, compliant ecosystems
serving various stakeholders beyond IT. As a result, advanced observability platforms
are needed to meet both technical and strategic organizational goals.

Key challenges in the data center environment include:

e Customization Requirements: Standardized solutions may not address the
distinct needs of various organizations. Customization is often implemented to
ensure infrastructure aligns with business objectives.

¢ Integration: Managing and integrating multiple components can introduce
complexity and require specialized expertise.

e Legacy Systems: Integrating legacy systems with modern infrastructure may
cause compatibility or performance issues.

e Resource Allocation: Efficiently allocate resources to meet workload needs and
reduce contention.

e Deployment Complexity: Manage operations across varied, multi-site data
centers.

e Cost-Effectiveness: Utilizing an open-source and cost-efficient platform over
proprietary alternatives.

Monitoring embedded units, PDUs, and environmental sensors presents additional
challenges, such as:

e Scalability: Monitor all Embedded Monitoring Units and PDUs across distributed
sites.

e Interoperability: Integrate with existing CMDB and incident management tools
without depending on specific vendors.

e Accurate Insights: Deliver timely data to reduce downtime and optimize
performance.

e Environmental Metrics: Measure factors like temperature and humidity.

These factors indicate the necessity for revised approaches. The subsequent section
introduces the intent and strategic direction of this blueprint.

1.2The Need for Observability

Traditionally, data center monitoring has been treated as a technical function, an
operational necessity for detecting faults, measuring resource usage, and maintaining
uptime. However, the expectations placed on modern data center operations have
evolved significantly.

Organizations now face demands such as:



Timely performance visibility across globally distributed, heterogeneous
environments (including co-location and edge sites).

Cross-functional integration between facility, infrastructure operations teams,
application operations teams, capacity planning, procurement, finance, and
sustainability teams.

Compliance with stringent regulatory frameworks requiring not only energy
efficiency but also auditability, transparency, and continuous reporting.
Adaptability to rapid deployment cycles and automation pipelines enabled by
Infrastructure as Code (laC), containerization, and cloud-native paradigms.

Observability, defined as the ability to infer the internal state of a system from its

telemetry (logs, metrics, traces) is no longer a tooling upgrade. It has become a
foundational capability for enterprise resilience, regulatory compliance, cost

optimization, and environmental responsibility.

1.3 Purpose of Blueprint

The goal of this blueprint is to deliver a targeted, composable, scalable, and modular

monitoring platform to:

Provide visibility into Embedded Monitoring Units and their connected devices.
Provide timely insights into power consumption, environmental conditions,
balance, function and device health.

Simplify the management and reporting of operational data using open-source
tools and technologies.

Automate deployment and management using

Centralize data processing with data lake for enhanced analytics.

Provide integration with various systems (i.e. Ticketing).

By implementing this solution, organizations will be able to:

Reduce operational risks through proactive monitoring and alerts.
Streamline incident management workflows via integration with Ticketing
platforms.

Lay the foundation for future observability enhancements, expanding beyond
Embedded Monitoring Units and PDUs...

Before diving into the technical framework, it is critical to understand who this solution

serves and how it influences organizational roles and responsibilities.

1.3.1 Primary Objectives

This blueprint aims to achieve the following objectives:



e Establish a unified architectural framework for integrating telemetry across
power, environmental, and asset management domains within data center
environments, utilizing Aperio Reference Architecture components

e Translate legal and regulatory obligations (e.g., Directive 2023/1791, Delegated
Regulation 2024/1364) into technical design requirements and system
capabilities.

e Define areference observability pipeline, including data ingestion, normalization,
enrichment, visualization, and alerting using open-source tools.

e Support dynamic, real-time observability of data center components such as
PDUs, sockets, phase loads, environmental sensors, and embedded monitoring
units.

e Enable integration with CMDB and Incident Management / Ticketing platforms to
ensure traceability, auditability, and automation of responses to anomalies or
regulatory triggers.

e Provide implementation guidance for scalable deployment across distributed
data center infrastructure, with applicability to co-location facilities and edge
environments.

1.3.2 How to Read This Document

This document is structured as both a strategic reference architecture and a technical
implementation guide. Itis intended to support a wide range of stakeholders with
varying levels of technical expertise, functional responsibility, and regulatory
involvement. As such, the document has been designed to be modular, navigable, and
role-aware, allowing readers to engage with the content based on their individual
perspective and operational focus.

To maximize clarity and usability, this section offers guidance on how to navigate and
extract value from the blueprint according to stakeholder function. Readers are
encouraged to approach the document non-linearly, focusing on the chapters that are
most relevant to their responsibilities while consulting foundational sections as needed
for context.

1.3.3 Recommended Reading Paths by Audience

. Recommended
Audience . Purpose
Sections
Infrastructure & Chapters 2,4, 6 Understand architecture, telemetry
Platform Engineers Appendices sources, and deployment models
Sustainability & Chapters 1.1, 3.6.5, 24“?:03322ransbc;“;iFsla::éTetooiliJn
Compliance Officers | 4.5,6.4 needs ’ ’ P g




Data Center Enable proactive planning, incident

Operations &

Chapters 2, 3, 4.2—

4.3,6.2,6.3 prevention, and

Capacity Planners power/environmental visibility

Service Management | Chapters 3.6.3, 4.6,
& Incident Teams 6.3-6.4

Understand alert correlation, CMDB
linkages, and incident resolution
workflows

Executive & Strategic | Chapters 1.1-1.2,
Leadership 3.6.6-3.6.8

Evaluate business value, risk
reduction, and alignment with
transformation strategy

External Partners & Chapters 1.3-1.4,
Regulatory Bodies 4.6,6.5

Assess regulatory alignment, system
openness, and cross-entity
interoperability

1.3.4 Reading Recommendations

Readers unfamiliar with observability concepts or data center operations are
advised to start with Chapter 2, which introduces key principles, layers of
observability, and distinctions from traditional monitoring practices.

Those evaluating the blueprint for alighment with EU regulations or internal ESG
frameworks should consult Chapter 1.3 for legal mappings and Chapter 4.5 for
data retention and audit considerations.

Readers involved in actual design and deployment of observability platforms
should focus on Chapter 4 (architecture) and Chapter 6 (implementation
strategy), which provide a technically actionable pathway for rollout.

Use cases, alert thresholds, and real-world implementation logic can be found in
the Appendices, which serve as reference material for practitioners.

1.3.5 Document Use in Practice

This document may be used in multiple contexts:

As an architectural guide for internal observability platforms across data
centers and co-location facilities.

As a compliance readiness framework, showing how data flows, reporting
outputs, and controls align with regulatory requirements.

As a stakeholder alignment guide during cross-functional workshops,
procurement evaluations, or design reviews.

As a knowledge base for onboarding technical teams or partners contributing to
observability deployment and lifecycle management.

Readers are encouraged to annotate, extend, or adapt this blueprint to suit their local

environment, technology stack, or regulatory jurisdiction. All design principles outlined

herein are intended to be composable, reusable, and modular.




1.4 Regulatory Considerations (Regulatory-Driven Framing)

This section outlines how European and national regulations affect current data center
operations. The resulting legal requirements and sustainability objectives serve as
design considerations for the monitoring and observability platform described in this
blueprint.

Infrastructure teams typically consider uptime, cooling, and space as primary factors.
Recently, energy consumption, carbon emissions, and public accountability have also
been identified as key considerations.

e Data centers use ~3-4% of total electricity in Europe.

e The European Union now requires reporting of energy efficiency and
environmental impact for data centers of certain sizes.

e Failure to comply may lead to legal risk, fines, or blocked expansion in
countries like Germany and the Netherlands.

e Clients and investors— sustainability is now a competitive advantage.

Observability now serves as both a compliance tool and a business enabler.
A simplified workflow:

EU Regulation (e.g., PUE reporting)

Requires data (IT power vs. total power)

Data collected via SNMP or Redfish from PDUs
Data processed to align with OpenTelemetry model
Stored in a data lake

Visualized through dashboards

Reports generated for EU, audits, and executives

Noapkrobdb=

This system streamlines compliance, enhances visibility, and delivers operational
insights—all framed by primary regulatory texts and mandates.

1.4.1Market and Operational Challenges in the Data Center Sector

Across Europe, data center operators from cloud providers to enterprise infrastructure
teams face converging pressures including:

Category Challenge Description

Operational Growing footprints of global data centers, co-location cages,

Complexity and edge sites leads to inconsistent monitoring and blind
spots.

Legacy vs. Many DCs operate mixed environments with legacy

Modernization infrastructure that lacks telemetry support.




Energy Reporting
Gaps

Operators often cannot measure or report energy
consumption at sufficient granularity for audit or

compliance.

Cooling & PUE
Monitoring

Temperature and humidity data is inconsistently tracked,
and PUE calculation often lacks real-time accuracy.

Siloed System
Ownership

IT, facilities, finance, and compliance teams use separate
tooling, hindering coordinated monitoring efforts.

Sustainability Proof
Gaps

Reporting frameworks (ESG, EU CSRD) require traceable
power and carbon data - current tooling often lacks in this

area.

These are no longer just best-practice shortcomings - many are now subject to legal and
regulatory enforcement, particularly under the revised Energy Efficiency Directive (EU
2023/1791) and its delegated implementation regulation (EU 2024/1364).

1.4.2 Regulatory Requirements (as per Apr.2025)

Below is a mapping of specific, enforceable obligations to architectural or design

responses.

Regulation

Legal Requirement

Blueprint Response /
Mapping

Directive (EU)
2023/1791 (EED -
Article 12)

Data centers with installed IT
power = 500 kW must report
energy efficiency indicators by
Sept 15, 2024.

Telemetry from PDUs +
Assent Metadata > data
Lake > exportable KPlIs

Delegated Regulation
(EU) 2024/1364
(Annexl)

Operators must report: PUE,
temperatures, waste heat reuse,
renewable share, energy reuse
factor, water usage.

Floor- and socket-level
monitoring, ambient
temp/humidity, data lake
enrichment

Regulation (EU)
2019/424 - Ecodesign

Applies minimum efficiency
standards for servers/storage.
Compliance needed to
procure/operate such devices.

CMDB-based mapping
of equipment type and
model + firmware
version tracking

Climate Neutral Data
Centre Pact (self-
regulation)

Commit to 100% renewable use
by 2030, energy reuse, clean
water use.

Renewable source
tagging per site, alerting
if usage exceeds brown
energy thresholds




Sources:

e DIRECTIVE (EU) 2023/1791

e DELEGATED REGULATION (EU) 2024/1364
e ECODESIGN REGULATION (EU) 2019/424

e GERMANY EEG 2023

(subject to update as per legal proceedings — no claim for long term accuracy)

1.4.3 Formalized Requirements Inferred (excerpt)

Each KPIl or mandate in the regulatory documents logically implies an infrastructure or
observability feature. Below are examples of traceable causality:

Legal Mandate (Verbatim)

Inferred Platform Requirement

“Operators shall report their Power
Usage Effectiveness (PUE)”
(Reg. 2024/1364, Annex )

Measurement of IT energy vs. total facility
energy > Derived from rack PDU data vs.
site-wide metering

“..temperature set pointin IT spaces and
external air temperature”

In-rack and whitespace temperature
monitoring, normalized and reported at
time-synced intervals

“Share of electricity from renewable
sources”

Tagging of sites by energy sourcing
metadata, with integration from
procurement or power provider contracts

“Data center waste heat utilization
potential”

Telemetry on inlet/outlet air differential
temperatures, airflow patterns, or BTU
calculations

“Annual water usage for cooling”

Integration with environmental and facility
sensors where cooling towers or liquid-
based systems are used

“Reporting KPIs to the central EU
database annually (Article 12, EED)”

Reporting/export API from Data Lake or
intermediate dashboard layer, structured
as per delegated regulation schemas



https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023L1791
https://eur-lex.europa.eu/eli/reg_del/2024/1364/oj
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R0424
https://www.bundesregierung.de/breg-en/search/amendment-of-the-renewables-act-2060448

Legal-to-System Mapping Flow
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1.4.4 Advanced EU Sustainability and Taxonomy Compliance Mapping

As data centers become both critical infrastructure and regulated environmental actors,
the European Union has introduced overlapping legal frameworks and voluntary pledges
that redefine observability from a purely operational tool into a sustainability-enabling
control system.

This section provides a glimpse of how advanced EU legislation - beyond baseline
energy efficiency directives, shapes architectural decisions, metadata design, and audit
workflows within the observability platform.

Where Section 1.4.2 presented formal reporting requirements, and Section 1.4.3
mapped legal text to inferred observability needs, this section translates strategic
sustainability mandates, including the Corporate Sustainability Reporting Directive
(CSRD), the EU Taxonomy Regulation, and the Climate Neutral Data Centre Pact
(CNDCP) into design implications. It also addresses forward-looking obligations such as
energy reuse, water efficiency, and Scope 3 readiness.

The Corporate Sustainability Reporting Directive (Directive (EU) 2022/2464)

CSRD introduces a dual-reporting obligation known as double materiality:

¢ Financial materiality: How environmentalrisks (e.g., energy costs, outage-prone
infrastructure) affect the organization’s performance.

e Impact materiality: How the organization’s operations affect climate, resources,
and society (e.g., carbon emissions, water draw, waste heat).

To support CSRD-aligned reporting, observability platforms must enable quantifiable,
traceable, and timestamped metrics that reflect both categories.

These include:

CSRD Topic Observability Feature




Site-level renewable energy tagging in CMDB and PDU

Scope 2 emissions
telemetry

Energy intensity Rack-to-room telemetry normalized by IT workload density

Physical climate risks | Overheat event detection, thermal capacity tracking

Material use and

. Telemetry-enriched health data for PDUs and sensors
lifecycle

Design Implication: Support ESRS-aligned exportable metrics (e.g., kWh/rack/month,
% renewable energy, AT over time) and link observability dashboards to disclosure
tools or corporate sustainability platforms.

EU Taxonomy Regulation: Substantial Contribution and DNSH

The EU Taxonomy (Regulation (EU) 2020/852) defines criteria for economic activities to
be classified as “environmentally sustainable.”

Data center activities must:
e Substantially contribute to at least one environmental goal (e.g., climate
mitigation)
¢ Notssignificantly harming other (DNSH) (e.g., water ecosystems, circular

economy)

e Respect minimum social and governance safeguards

Mapped DNSH Considerations:

DNSH Pillar Observability Design Response
Climate mitigation Real-time PUE tracking, renewable energy source tagging
Water protection Integration with water flow meters (cooling towers, CRAC)

Waste heat BTU tracking, AT differentials across containment

Pollution prevention
zones

Circular economy Equipment age/lifecycle telemetry for predictive replacement

Resource use

.. Load balancing visualizations and underutilization reports
efficiency




Design Implication: Introduce metadata tags for DNSH coverage at rack, room, and site
levels. Support spatial overlays and metric summaries that reflect taxonomy criteria.

Energy Reuse and the Energy Reuse Factor (ERF)

Per Annex | of Delegated Regulation (EU) 2024/1364, ERF must be reported—the
proportion of energy repurposed for heating or secondary uses. This requires in-rack
temperature and airflow telemetry, waste heat measurement (via BTU estimation or
Redfish API), and tracking reuse-eligible versus total energy consumed.

Design Implication: Extend telemetry to support ERF calculations and heat reuse
mapping; include compliance indicators for areas with reclaimable heat versus passive
losses.

Water Usage and Cooling Efficiency

Data centers using adiabatic or evaporative cooling must now report water usage in line
with EED Article 12 and 2024/1364. Mapped Requirements are Flow sensor integration
(via Modbus, BACnet, or REST). Normalization of usage per kWh delivered IT load and
Geotagging for water-stressed regions and governance zones.

Design Implication: Ingest and store water metrics alongside energy, apply temporal
alignment, and ensure audit traceability and add a telemetry schema extension to
support WUE (Water Usage Effectiveness) export.

Climate Neutral Data Centre Pact (CNDCP) Self-Audit Metrics

e Operators participating in the CNDCP pledge to:
e Achieve PUE targets (=1.3 for cooler zones),

e Reach 100% renewable energy by 2030,

e Implement heat reuse and water efficiency goals.

Design Implication: Introduce a Pact Compliance Dashboard template (see Appendix
D), summarizing PUE trends and violations, Renewable sourcing status, Waste heat
reclaims rate and zones of potential, Energy and water KPIs over time (rolling and
seasonal).

The dashboard should support PDF/JSON/CSV exports, optionally validated against Pact
milestones for automated self-audit.

Regulatory Design as System Constraint

Advanced regulatory frameworks no longer act solely as external requirements - they
now serve as architectural constraints that shape metadata schemas, telemetry
priorities, and reporting outputs. Designing for EU Taxonomy alignment or CSRD audit-
readiness from the outset reduces long-term retrofit costs and positions observability
platforms as not just technical, but strategic enablers of sustainability disclosure.



2 Understanding Datacenter Monitoring and
Observability

2.4 Overview

Datacenter monitoring and observability are closely related; however, observability
goes beyond traditional monitoring which focuses on understanding and analyzing the
state of target systems based on their outputs.

Observability enables organizations to detect, diagnose and act towards timely and/or
proactive resolution of issues through the added benefits of deeper insights in said
systems.

In summary, observability is the practice of using telemetry data - logs, metrics, traces,
outputs to understand the behavior of systems with the goal of enhanced management,
enhanced stability, design, identification of bottlenecks, predicting failures and
proactive actions.

Datacenter monitoring and observability are essential for modern infrastructure
management. They go beyond merely tracking metrics to include comprehensive
insights into system behavior and configuration states.

With the inclusion of CMDB and desired state reporting, we enhance visibility and
control, ensuring systems remain aligned with operational goals and compliance
requirements.

Monitoring focuses on "How it is going and what happened,” while observability seeks to
answer, "Is it acceptable and why it happened." With CMDB and desired state reporting,
organizations can also address "how it alighs with expected behavior."

2.4.1 Hardware Layer

The Hardware Layer is the foundation for observability by providing telemetry data from
specific datacenter components, such as:

- Embedded Monitoring Units: acts as a central point for collecting telemetry
data from/about connected devices

- Power Distribution Units (PDU’s): Provides detailed metrics on power usage,
capacity, efficiency, fluctuations & etc.

- Environmental sensors: Capture information like temperature, humidity, for
overall analysis of environmental parameters. Embedded monitoring

- Switches and Breakers: Offer operational metrics and fault detection
capabilities.



2.4.2 Observability Software Layer

The Observability Software Layer collects, processes and organizes telemetry data from
the hardware layer with features that include:

-  Telemetry Aggregation: Collects logs, metrics, traces, outputs from targeted
hardware sources.

- DataProcessing and Correlation: Links data points to dependencies, issues
and desired insight.

- Timely Analysis: pattern and anomalies identification upon occurrence

- Configuration Management Integration: Continuously synchronization with
CMDB to reflect the current state.

- Desired State Management: Monitoring resources to ensure alignment with
predefined configurations, alerting to deviations and config drift.

- Self-Healing Capabilities: Automatic remediate discrepancies between current
and desired states when possible.

2.4.3 APl and Telemetry Layer

This layer acts as a bridge between the hardware, monitoring and observability platform,
external and third-party systems/tools. This layer includes:

- Access to CMDB Data: Enables real-time querying and updates to maintain
synchronization between the physical and logical infrastructure.

- Standardized Interfaces: OpenTelemetry, SNMP, and REST APIs facilitate
integration with observability and configuration.

- Desired State Reporting: APls support state validation workflows, generating
reports that highlight compliance or deviations.

- Standardized Access: Interfaces like OpenTelemetry, Redfish API, REST APl and
SNMP enable uniform data collection and interaction.

- Integration: Facilitates interoperability, management, orchestration, and
analytics platforms.

- Programmatic Control: Allows automation, robotic workflows and
customization of data pipelines.

2.4.4 Visualization and Insights Layer

This layer represents the actual point where stakeholders and interested parties (users)
interact with monitoring and observability data. It includes:

- Dashboards: visual representation of key metrics and trends

- Alerting mechanisms: Notification for threshold breaches or anomalies

- Advanced Analytics: Historical and empirical analysis

- CMDB Visualization: integrated view of hardware and software configurations



- Desired State Reports: Highlights discrepancies between the current and

desired states, including possible actionable insights into remediation.
- Floorplan Visualization and Heatmapping: Provides briefly graphical

representation of data such as rack location, consumption, acceptable operating

parameters, capacity etc.
- Predictive Analytics and Alerts: Based on telemetry data and CMDB

information to predict states and/or issues.

2.5 Core Principles of Datacenter Monitoring and Observability

Principle Name

Description

Telemetry driven
insights

Capturing and analysis of telemetry data such as logs,
metrics, and traces and outputs to provide actionable
insights into system behavior and performance.

Resource Visibility

Ensures all hardware and software resources, such as
PDUs, Embedded Monitoring Units, and sensors, are visible
and accounted for in monitoring systems.

Dynamic Resource
Allocation

Allocating monitoring resources dynamically to adapt to
changing workloads and environments against CMDB

Automation and
Orchestration

Automates observability workflows and aligns resource
allocation with real-world operational demands.

Interoperability

Ensures integration with diverse tools, platforms, and
telemetry standards through APIs and open protocols.

Scalability and
Elasticity

Enables observability solutions to scale as infrastructure
grows, ensuring consistent performance across
environments.

Proactive Maintenance

Predicts potential failures using advanced analytics.

Data Correlation and

Context

Links telemetry data from multiple sources to provide
context.

Flexibility and
Adaptability

Adapts monitoring and observability processes to
accommodate new technologies and evolving business
requirements.

Software-Defined
Control

Uses software to manage and configure observability
processes, ensuring scalability and adaptability.

Resource Isolation

Ensure observability workloads do not interfere with
operational systems, preserving performance and security.




Optimizes the use of resources for telemetry collection and

Resource Efficiency analysis, reducing overhead.

2.5.1 Benefits of Observability

Effective observability brings transformative benefits to datacenter management:

- Deep System Understanding: Observability provides detailed insights into the
internal state of systems, revealing dependencies, operational state and potential
risks.

- Proactive Management: Predictive analytics enables addressing issues before they
impact operations.

- Enhanced Automation: Observability data powers automation workflows for
incident response and resource optimization.

- Integration: Open standards and APlIs facilitate interoperability with existing IT and
operational platforms.

2.5.2 Observability vs. Monitoring

While monitoring tracks predefined metrics and alerts when anomalies occur,
observability takes a broader approach:

- Monitoring answers the question, “What is wrong and how it is going?”
- Observability answers the question, “Is it normal and why is it wrong?”

Aspect Monitoring Observability
Scope Tracks Predefined Analyzes telemetry to provide insights
metrics and states about system state and behavior.
Focus Whatis wrong and how | Isitnormal and why is it wrong?
is it going?
Data Sources Metrics from specific Combines metrics, logs, outputs and
components like PDUs | traces for a holistic view.
Or sensors.
Use Cases Threshold-based alerts | Root cause analysis, anomaly
and basic performance | detection, and predictive analytics.
tracking.

2.5.3 Benefits of Integrating CMDB and Desired State Reporting

Integrating CMDB and desired state reporting into monitoring and observability practices
provides significant advantages:

Configuration Compliance: Ensures that all resources remain aligned with predefined
baselines.



Enhanced Reliability: Timely identification and remediation of discrepancies.

Centralized Management: Consolidates configuration and telemetry data for a holistic
view of the datacenter or datacenter units.

Predictive Insights: Combines CMDB data with telemetry to anticipate configuration
drift and its impact.

Improved Governance: Strengthens auditability and compliance with industry
standards.

2.5.4 Monitoring, Observability and Desired State Reporting Example

Scenario: Configuration drift detected in a critical power distribution unit (PDU) with
parameter threshold crossing in line with prior definition.

The process follows the pattern:

1. Data Collection & Alerting: The PDU telemetry indicates unexpected behavior.

2. CMDB Validation: Observability tools query the CMDB and detect that the
current configuration does not match the desired state.

3. Root Cause Analysis: Logs and traces correlate the drift to a recent automated
firmware update.

4. Automated Remediation: The system rolls back the firmware to the desired
version and updates the CMDB.

5. Reporting: A desired state compliance report is generated, documenting the
issue and resolution for auditing purposes.

To translate these principles into reality, we now provide a detailed implementation
roadmap—outlining how to deploy and operate the observability platform across
environments.

3 Stakeholders and Organizational Impact

A solution is only as valuable as the problems it solves for its users. This section maps
key internal and external stakeholder groups across data center ecosystems,
highlighting their priorities and challenges. By understanding business and operational
needs, we ensure the observability platform is tailored for real-world impact. Each
stakeholder group introduced here will have its requirements addressed in the
subsequent architectural and implementation sections.

We hereby undertake an exemplary exploration of how observability practices affect
specific stakeholder groups within the company. Understanding the who (i.e., key roles)
and what (i.e., processes, workflows) is essential to articulating observability’s strategic
importance, especially for business professionals seeking buy-in from multiple parts of
the organization.



3.1 Why Stakeholders Matter

The company operates an extensive global network of datacenters, co-locations and

cloud environments, serving both external and internal clients, teams and interest
groups. Therefore, it is standard practice that each facility must align to stringent
requirements such as (but not limited to): uptime, availability, stability, compliance

and energy-efficiency.

Complexity: Multiple hardware vendors, open-source tools, proprietary components,

and partner integrations.

Accountability: Strict service-level agreements (SLAs) with enterprise customers

require efficient incident management and rapid response times.

Sustainability: Sustainability metrics are critical across all data center locations.

Having these imperatives in mind, a wide range of stakeholders - beyond just data center

operators - depend on reliable observability data. In this document we detail each

group’s concerns and how observability transforms their respective workflows.

3.2 Stakeholder Impact & Review Matrix

Data Center Observability is not a standalone technological function - it is a business-

critical enabler across multiple stakeholder groups. In this section we attempt to

provide a detailed mapping of each stakeholder group's priorities, the value derived from

observability, and how the ApeiroRA Monitoring Blueprint addresses their specific

needs.

Stakeholder Group

Primary Responsibilities

Data Center Operations &
Engineering

Infrastructure Architecture &
Capacity Planning

Sustainability & Energy Efficiency
Teams

Security & Compliance

Procurement & Asset Management

Incident & Operations Management
(RunOps/NOC)

Power/cooling oversight, infrastructure
health, PDU/Embedded Monitoring Units
maintenance

Rack layout, scaling plans, energy design,
power balance modeling

Energy footprint analysis, carbon reduction,
reporting for GHG protocols

Audit readiness, fault logging, tamper alerts

Inventory alignment, lifecycle planning, cost
optimization

Incident triage, SLA compliance, root cause
analysis



Cloud/Platform Engineering

Management & Governance

Table 1: Stakeholder Landscape and Responsibilities

Integration into cloud-native stacks, API
access, GitOps

Investment visibility, risk posture, policy
enforcement

How Observability Supports

Stakeholder Their Role Specific Feature Mapping
. SNMP telemetry from
DC Ops & Engineering S:j::gi;?séiilertmg’ and root- PDUs/Management points, alerts
y on 75%/95% thresholds
Infrastructure Predictive analytics, capacity Consumption trends,
Architects utilization, load balancing rack/row/room granularity

Sustainability Teams

Visibility, carbon load tracking,
anomaly detection

kWh tracking per rack/row/DC,
load vs. estimated power vs.
contract capacity

Security & Compliance

Fault/event correlation, tamper
detection, audit logs

Logstash enrichment, Ticketing
Platform for incident traceability,
config drift validation

Incident Management
(NOC/RunQps)

Single source of truth during
outages

Ticketing + Data Lake + Alerting,
PDU variance alerts

Cloud/Platform Teams

CI/CD pipeline compatibility,
declarative infrastructure

GitHub Actions, Helm, Open
Telemetry, Redfish API

Leadership &
Governance

Evidence for strategic
investments and compliance

KPI dashboards, audit
compliance snapshots, capacity
prediction charts

Table 2: Stakeholder Impact Summary

Stakeholder Sample KPl/ Outcome
0 i . 0 o
DC Ops & Eng 50% faster root-cause resolution, 75% reduction in false
alarms
Sustainability Monthly GHG report automation, kWh per rack metric
Architects Capacity forecast accuracy >90%
. Zero untracked config drifts in PDU Embedded Monitoring
Security .
Units zones
Procurement Asset utilization ratio >85%




Incident Teams <15 min MTTR for power-related incidents

Cloud Engineers Zero downtime during reconfigurations via GitOps

Governance Blueprint adoption in 100% of new DC zones by 2025 Q3

Table 3: Stakeholder Outcomes & KPIs (example)
3.3 Primary Stakeholder Groups

3.6.1 Data Center Operations & Engineering

Responsibilities

e Oversee daily infrastructure tasks: power distribution, cooling, rack
management.

e Maintain actual status for critical components like: Embedded Monitoring
Units, PDUs, Breakers, Loads and Environmental Sensors.

Observability Benefits

¢ Improved Incident Response: Unified dashboards for SNMP/Redfish data
expedite root-cause analysis (see Section 4.1.3). Operators can detect power
overloads or thermal anomalies in seconds.

e Compliance & Reporting: Automated logs and continuous polling support
streamlined audits (e.g., ISO 27001, EN 50600).

e Scalability: Leveraging open frameworks (Kubernetes, Open Compute Project)
helps standardize new deployments without vendor-specific constraints.

3.6.2 Capacity Planning & Infrastructure Architecture
Responsibilities

Strategically planned expansions, cluster configurations, and future resource
allocations for cloud and on-premises offerings.

Ensure synergy between emerging technologies (e.g., hyperconverged systems,
container orchestration) and existing data center assets.

Observability Benefits

Predictive Capacity Management: Historical usage trends, from rack-level power
metrics to container CPU usage, feed into sophisticated modeling for future growth
scenarios.

Reduced Overprovisioning: Visibility into real utilization helps right-size deployments -
especially crucial as companies pivots toward “green data centers” where capacity
must meet sustainability goals.



Rapid Innovation: Observability fosters faster trial cycles for new hardware or cloud
services, as architectural impact is visible in near-real-time logs and telemetry.

3.6.3 Operations & Incident Management Teams

Responsibilities

e Manage cross-data-center events.
e Uphold global SLAs for enterprise software customers.

Observability Benefits

e Single Source of Truth: Combining central data ingestion with Ticketing
integration enables incident teams to see correlated alerts across geographies.

e Faster MTTR: Granular data from PDUs, temperature sensors, and system logs
reduce guesswork, zero in on anomalies that span infrastructure and application
layers.

e Proactive Alerts: Telemetry-driven thresholds (e.g., socket-level consumption
over 80%) to prevent cascading failures and SLA breaches.

3.6.4 Finance, Procurement & Vendor Management

Responsibilities

e Oversee costs for hardware procurement, power and cooling infrastructure,
large-scale DC production environments.
e Negotiate vendor contracts to align with strategic and sustainability objectives.

Observability Benefits

e Cost Visibility: PDU metrics at the socket or row level highlight potential
inefficiencies (e.g., heavily over-utilized PDUs in one region vs. underutilized
capacity in another).

e Data-Backed Negotiation: Detailed usage data supports more effective vendor
contract discussions—whether for electricity rates or specialized hardware

e Budget Forecasting: Historical consumption patterns are invaluable for
accurate quarterly or annual budgeting, aligning with major product lines or
planned capacity expansions.

3.6.5 Sustainability & Compliance Officers
Responsibilities
e Oversee environmental commitments, ensuring carbon footprint reduction and
compliance with EU data protection and energy directives.

e Publish internal sustainability reports and facilitate external audits (e.g., for Data
Center Efficiency classification).



Observability Benefits

e Granular Energy Tracking: Observability data—temperature, humidity, power
usage—feeds into carbon footprint analyses and continuous improvementin
PUE (Power Usage Effectiveness) and for meeting ESG (Environmental, Social,
Governance) reporting criteria.

e Regulatory Readiness: Automated logging and centralized data archiving for
simplified compliance with local regulations, such as Germany’s EnWG for
energy and water usage or the EU’s Code of Conduct for Data Centers.

e Transparency & Innovation: Visibility into exact load distribution encourages
pilot projects (e.g., reusing waste heat or advanced cooling solutions) to achieve
net-zero goals.

3.6.6 Executive Leadership & Business Strategy

Responsibilities

e Assistin strategic roadmap on IT investments or expansions.
e Monitor risk exposure, brand reputation.

Observability Benefits

e Holistic Risk Assessment: Executive-friendly dashboards highlight high-
risk areas, e.g., a cluster nearing capacity or repeated sensor alerts in a key
data center.

e Strategic ROI: Data-driven evidence of reduced downtime, operational costs,
and carbon footprint.

e Competitive Differentiation: By demonstrating robust observability across
all data centers, companies can showcase resilience and sustainability as
part of their unique value proposition.

3.6.7 Impact on Core Processes

Beyond targeting specific roles, Observability reshapes fundamental data center and

cloud operations:

- Incident Response Workflow

Enhancement: correlation of events—power surge plus specific usage spike—enables
immediate escalation to the right on-call teams.

Outcome: Fewer false alarms, shorter mean time to acknowledge (MTTA), and overall
improved service availability.

- Change & Release Management

Enhancement: Observability data integrated into GitHub Actions (or other CI/CD
pipelines) ensures new configurations are monitored from the first deployment.



Outcome: Rapid feedback on performance regressions or environmental anomalies,
mitigating production-level disruptions.

- Resource & Capacity Forecasting

Enhancement: Historical usage patterns feed ML-driven forecasting to anticipate peak
demands (e.g., during software version upgrades or seasonal cycles).

Outcome: Balanced allocations across global data center estate, minimizing both
overprovisioning and sudden capacity crunches.

- Budget & Cost Allocation

Enhancement: Usage of metrics at the organizational unit level allow each department
to see real costs tied to their workloads (e.g., a dev/test environment versus a productive
system).

Outcome: Greater accountability and potential cost savings as departments make more
informed scale decisions.

3.6.8 Linking Observability to Broader Goals

Observability is not simply a “tool upgrade,” but rather a strategic capability:

e Digital Transformation: It underpins the shift to agile, software-defined data
centers, ensuring that insights support continuous improvement and innovation.

e Global Standardization: Observability fosters consistent processes across
numerous data centers, reinforcing best practices and shared standards.

e Customer Confidence: Transparent, well-documented data center performance
helps assure clients, especially those in regulated industries, that their
mission-critical solutions are supported by compliant, stable, efficient, and eco-
friendly infrastructure.

3.6.9 Examples of use cases that can be achieved with the proposed
solution:

Category Use Case Description Purpose

Monitor Power
Consumption Multiple
Power
Power . Levels - Floor, Cage,
. Consumption .
Monitoring Monitorin Containment zone,
& | Row, Rack, PDU, Socket
kWh)

Ensure efficiency, Avoid
overloads & disbalance,
track trends, cross-
reference, Observer
Power Posture




Monitor Power load on
Multiple Levels - Floor,

Ensure efficiency, Avoid
overloads & imbalance,

Power Power Load .
Monitoring Monitorin Cage, Containment track trends, cross-
g zone, Row, Rack, PDU, reference, Observer
Socket (kW) Power Posture
Track phase loading and . - .
P . . g‘ Prevent inefficiencies
Phase correlate with historical
Power and ensure balanced
. Balance patterns, measure .
Monitoring o . . power usage against
Monitoring against desired state .
. . desired state
and maximum capacity
N . Enable preventative
Circuit Monitor and alert on . P .
Power .. . maintenance, avoid
o . breaker circuit breaker trips or .
Monitoring o . o downtime to the extent
Monitoring nearing capacity limits .
possible
Evaluate individual Enable capacity
Power Socket-Level socket load patterns to planning, reduce energy
Monitoring Load Analysis | detect underutilization waste, ensure proper

or overdraw

balancing

Display heatmaps and

Avoid overheating and

Environmenta | Temperature trends for rack and . .
o . . optimize cooling
L Monitoring Mapping whitespace .
strategies
temperature
tAle.rtlng & Threshold Configure alerts for Re?pld Respoqse for
incident critical deviation or
based alerts power events .
Management catastrophic failures
tAle.rtlng & Threshold Configure alerts for Rgpld Resp‘on‘se for
incident critical deviation or
based alerts temperature events .
Management catastrophic failures
Detect and log SNMP
. traps for high-priority Ensure Timely reaction in
tAle.rtmg & Critical Event | events (e.g., UPS, PDU connection with
incident . . . . . .
Management detection failures) (Also possible operational disruption
g thrum Redfish or REST | avoidance
APIl) - Power
. Detect and log SNMP Ensure Timely reaction in
Alerting & - . .. . .
.. Critical Event | traps for high-priority connection with
incident . . . .
detection events (e.g., UPS, PDU operational disruption
Management

failures) (Also possible

avoidance




thrum Redfish or REST
APIl) - Temperature

Alerting & Incident Correlation Power & Enhance and Enable RCA
incident Correlation Environmental metrics + Resolution speed (TTF)
Management to enable RCA P
Alerting & Rack Visualize rack-lgvel Prevent overloading and
. e power and cooling .
incident Utilization improve resource
. usage for balance and )
Management | and balancing o allocation
optimization
t
Send. aggrega ed . Data Aggregation,
Integration Data Lake metrics into enterprise Reporting, Enrichment &
g Integration data lakes for initial etcp &
analytics usage )
Embedded .
o Monitor access
Monitoring
. attempts and
. Units and . . . . .
Security ) configuration changes security and audit trails
Device
on Embedded
Access o .
o Monitoring Units
Monitoring
Track Firmware version
Firmware and PDU against Ensure security
Security Compliance compliant versions compliance, reduce
monitoring (automatic version vulnerability risks
alerting & enforcement)
Detect deviations
Alerting & Configuration | between live consistency and
incident Delta configurations and compliance with system
Management | Detection desired state stored in standards
CMDB
Create consumption
Compliance Energy ‘ report§ for audits / Meet. regulatory
. Consumption | compliance (carbon requirements and
Reporting . . . . -
Reporting footprint reporting & support sustainability
etc. if needed)
Compliance Carbon Monitor power usage to Regulatory reportin
P Footprint calculate DC carbon & yrep g

Reporting

reporting

footprint

needs specially in the EU




Dynamically updated

up-to-date configuration

. Aut0|.'natec.l SNMP polling settings or | and alighed with
Integration Configuration ) .
thresholds based on operations, maintenance
Updates
system changes & demand management
Environmenta | Humidity Display heatmaps and AVO.Id pverheqtlng and
L Monitorin Manbin trends for whitespace optimize cooling
g Pping humidity strategies
tt\le.rtlng & Threshold Configure alerts for Répld Resp.on.se for
incident s critical deviation or
based alerts humidity events C
Management catastrophic failures
Detect and log SNMP
Alerting & N traps for high-priority Ensure TlmelY reactionin
.. Critical Event | events (e.g., UPS, PDU connection with
incident . . . . . .
Management detection failures) (Also possible operational disruption
g thrum Redfish or REST | avoidance
API) - Humidity
. . Monitor uptime metrics .
Compliance SLA & Uptime . . Compliance assurance,
. o + Reporting against L
Reporting Monitoring reliability

SLA/OLA

Having mapped the stakeholder landscape and strategic impact, we now explore the
underlying technical framework that supports scalable, composable, and interoperable
observability.



4 Framework Design

4.1 Logical Architecture

The observability platform is architected around modular, loosely coupled layers that
separate concerns across data acquisition, processing, orchestration, integration, and
visualization. Itis built with open-source components and industry-standard protocols
to ensure interoperability, scalability, and enterprise-readiness.

Visualization
Visualizing and displaying data

Integration

Exposing endpoints for data access

Processing

Filtering, enrichment, data analysis

Data Acquisition
Collecting data from sources

The architecture integrates critical tools and technologies into distinct layers.

A. Data Source & Protocol Interfaces:

Protocol / Interface

Purpose

SNMP (v2c / v3)

Polls metrics and receives traps from PDUs, EMUs, circuit
breakers, and sensors

Redfish API (REST)

Collects structured telemetry from Redfish-compatible smart
power/thermal devices

OpenTelemetry Aggregates logs, traces, and metrics from distributed services
Protocol (OTLP) and agents
REST APls Interfaces for CMDB or third-party data pull/push operations

These protocols enable secure, standardized communication with devices across

heterogeneous environments.

Data Collection & Ingestion:

o Telegraf: Collects SNMP metrics and traps from Embedded Monitoring Units,
PDUs, and environmental sensors.




e Redfish Collector: (Python/REST-based or plugin-based): Gathers metrics over
HTTPS from Redfish-enabled devices.

e OpenTelemetry Collector: Ingests logs, traces, and metrics from agents
deployed on infrastructure or services.

All collectors need to be configured with polling frequency, authentication, device
mapping, retry logic & etc.

B. Orchestration and Deployment

- Kubernetes (Gardener): Orchestrates containerized components and ensures
scalability including fault tolerance

- Greenhouse: Simplified deployment and management of applications including
version-controlled deployment configuration among distributed clusters

C. DataProcessing:

- Collector-processors: Processing and transformation of SNMP and telemetry
data

- Data lake: Metrics/events storage, indexing, enrichment and querying.

D. Integration

- CMDB: Manages inventory, device metadata, desired and current state, providing
visualization support.

- Ticketing Platform: handles incident response and workflow automation

- Observability layer and correlation engine: Receives enriched analytics for
data lake and observability analytics.

E. Visualization:

- CMBDB: Floorplan visualization, heatmap & overview

- Perses: Dashboards, data analysis

4.2. Metrics Monitored

Power Metrics:

Metric Description

PDU Socket Level | Measures how much power is drawn from each outlet/socket on
Consumption a PDU (in kWh). Helps track energy use per device.

Evaluates whether the electrical load is evenly distributed
Phase Balancing across all three power phases. Imbalance may reduce
efficiency or cause faults.

Power Load Tracks how power usage is distributed across racks, cages, and
Distribution floors. Highlights hotspots or underutilized zones.

Consumption
Fluctuations
(Peaks)

Highlights sudden power spikes, which may indicate faults,
high-load events, or cooling failure responses.




Monitors the consistency of power delivery over time (e.g.,
Power Stability voltage/current variation). Instability may signal upstream
electrical issues.

Power Capacity Measures current consumption against rated capacity of PDUs
Consumption or circuits. Helps avoid overloads and triggers capacity alerts.

Environmental Conditions:

Metric Description

Temperature Real-time and historical readings from rack, row, or room-level
sensors. Helps manage thermal profiles and cooling efficiency.

Humidity Tracks moisture levels within whitespace. Helps prevent
equipment corrosion or electrostatic discharge.

Device Health:

Metric Description

Uptime Measures the operational availability of PDUs, EMUs, and other
monitored devices.

Error Logging Captures and classifies error events, warnings, or critical

system logs from devices.

Device Response Evaluates latency, success/failure of SNMP or API queries —
Metrics signals device health and communication issues.

Fault Telemetry Detects hardware-specific alerts like breaker trips, thermal
failures, or tamper events.

To support such a platform, the infrastructure itself must be modular and dynamic. The
next section introduces composable infrastructure and how it enables flexibility and
control.

4.3 Data Quality & Normalization Principles

Any operational and fit for purpose observability platform relies on clean, consistent,
and structured data to deliver meaningful insights, enable automation, and support
downstream decision-making processes. In heterogeneous data center environments
where equipment varies by vendor, model, firmware version, and communication
protocol, ensuring data quality and semantic consistency becomes foundational to
success.

This section outlines the principles and practices ensuring data ingested into the
observability pipeline is normalized, consistent, and enterprise-usable across all
modules.



4.3.1 Unified Data Model

Allincoming telemetry — whether SNMP-based metrics, Redfish payloads,
OpenTelemetry streams, or REST API results, is transformed into a unified internal data
model (extending OpenTelemetry timeseries model and semantic conventions). This
common format allows systems to interpret data uniformly across locations and
devices.

Examples of Primary Fields:

e hw.type (e.g., “PDU”, “Embedded Monitoring Units”, “temperature_sensor”)
e hw.name (canonicalized identifier: DC-WDF-CAGE3-PDU-04)

e timestamp (UTC ISO 8601)

e location.path (hierarchical: DC > Cage > Rack > Device)

e hw.status (ok/degraded/failed)

e source_protocol (SNMP, Redfish, OTEL, etc.)

In this example the scheme is enforced in data collection pipelines, ensuring
consistency regardless of source heterogeneity.

4.3.2 Naming & Tagging Conventions

Inconsistent naming is one of the primary causes of operational drift and observability
blind spots. Therefore, a strict naming and tagging convention is used for all devices and
metrics.

Device Names:

e Follows the pattern: Location Code-Room/CageCode-Devicelype-Sequence
e Example: DC-FRA-CG2-PDU-08

Rack Identifiers:
e Should match CMDB entries: RACK-WDF-01-15A
Metric Namespaces:

e Use dot notation with clear hierarchy: power. socket. load_kw, env. temp_c,
breaker. status

Tagging:

e Alldata points include tags for site_id, rack_id, EMU_id, device_vendor,
firmware_version, and region
e Tags are critical for filtering, alert scoping, and dashboard generation

Enforcement of naming policies is integrated into CMDB through validation rules and
form constraints.



4.3.3 Timestamp Synchronization

e All devices must provide telemetry with timestamps either in UTC or local time
zone with offset metadata.

e Embedded Monitoring Units without native timestamp support will have polling
timestamps assighed by a collector, with a fixed polling interval.

e NTP synchronization is a hard requirement for all management devices,

Embedded Monitoring Units, and hosts to prevent false-positive alerts caused by
time drift.

4.3.4 Metric Normalization & Unit Handling

Vendors expose metrics in inconsistent units (e.g., watts vs. kilowatts, Fahrenheit vs.
Celsius). This platform standardizes units for analytical consistency.

Standard Units:

e Power: kW

e Energy: kWh

e Temperature: °C
e Humidity: %

e Load/Capacity: %

Allincoming metrics undergo unit normalization inside Logstash or Telegraf using
transformation filters. Any metric that cannot be reliably converted is flagged and

optionally dropped, ensuring data cleanliness over data completeness.
4.3.5 Data Integrity & Validation
To prevent corrupt or misleading data:

Zero and Null Handling:

e null, NaN, or zero values from known faulty sensors are discarded or flagged via
status=unknown

Out-of-Range Detection:

e Thresholds are applied at the edge to drop or flag impossible values (e.g.,
temperature > 85°C, socket load > rated value)

Rate of Change Validation:

e Sudden changes are compared against prior samples (e.g., power load spike of
300% triggers a review)

These validations ensure that dashboards and automated alerts are not polluted by low-
quality or erratic data.



4.3.6 Deviation Correction Model for Quantized Power Telemetry in PDUs

Some PDUs sometimes exhibit telemetry quantization effects, where reported power
values are rounded to coarse steps - typically in 0.1 kW increments. This results in
significant loss of resolution for low-power devices (<200 W), leading to underreported
or zeroed-out power readings. This behavior introduces systematic deviation that
hampers monitoring fidelity, capacity planning, and energy reporting accuracy.

4.3.6.1 Observed Behavior & Problem Statement

In example:

- Puueto be the actual power consumption at a given time (in Watts)
- Preporeato be the power reported by the PDU

For Affected Devices:
P rue
P{reported} = l% x 100

This causes:

- Ptrue € [0,99] = Preported = 0

- Pirue € [100,199] > Preported = 100

- etc.

This quantization step of 100W (0.1kW) leads to:

- Upto 99W of underreporting per socket
- Aggregate underestimation of load
- Inaccurate power heatmaps and failure to trigger alerts

4.3.6.1 Proposed Correction Model

The correction model leverages more granular telemetry inputs voltage and current to
compute apparent power, which avoids the quantization bias present in the reported
real power.

4.3.6.1.1 Apparent Power Estimation

Given:

- |:RMS current reported by the PDU (in Amperes)
- V:RMS voltage reported by the PDU (in Volts)

Then the apparent poweris S = VV'x [/ [in VA]

To convert to kilowatts: Pestimated = S
1000




If Power Factor (PF) is known or can be assumed: Pestimated =
Where PF € [0.8, 1.0] depending on the device

4.3.6.1.1 Correction Logic

We define the corrected power reading;:

_ Pestimated
P corrected — P
reported

If Preportea is @ multiple of 100W and deviation > €
Where:

- €isadefined tolerance threshold (e.g., 20W)
= A deViatiOl’] flag can be raised if Preported_ Pestimated | > E

4.3.6.2 Algorithmic Steps
1.Poll SNMP OIDs for:

- V2 Voltage per socket (or bank)
- I Current per socket (or bank)
- Preportea: Real power per socket

2. Compute Pest[mated= VX ]/1000
3. Compare Pestimatedand Preporred
4. If deviation > €, substitute Pcorrected = Pestimated
5. Flag deviations for visualization and alerting
Example:
Let:

e V=230V

e [=043A

e PF=0.95

230%0.43%0.95

Then: Pestimated = BT ~ 939 W
Assuming:

- Preported =0W

-e=20W

VxIxPF

1000



Then: |Pestimated - Preportedl =939W > 20W = Pcorrectea = 93.9W

4.3.6.3 Operational Deployment Notes

Implementing the deviation correction model in a real-world observability platform
requires thoughtful integration with existing telemetry pipelines and system
architecture. The following considerations guide the operationalization of the model:

Pipeline-Level Correction:

Deviation correction should be applied during the data ingestion phase, prior to storage
or visualization. Tools such as Logstash (via Ruby filters), Telegraf (via Starlark or execd
processor plugins), or Kafka Streams can be used to calculate estimated power values
based on voltage and current telemetry, compare them against reported values, and
override where deviations exceed defined thresholds.

Deviation Metadata Management:
Corrected readings must include associated metadata, such as:

e correction_applied: true/false
e original_reported_value

e correction_method

e deviation_amount (W)

This metadata ensures transparency, facilitates root cause analysis, and supports
auditability, especially in regulatory or billing-sensitive environments.

Power Factor (PF) Handling:

When PF is not explicitly reported by the PDU, estimated real power should be derived
using:

e Default values by device category (e.g., compute servers: 0.95, storage: 0.9)

e Operator-defined constants via configuration

e Adaptive heuristics, e.g., mapping PF to outlet type (C13/C19), or based on
historical device signatures.

Accuracy Optimization for Critical Use Cases:
For environments requiring high accuracy, such as:

e Energy billing and chargeback models
e Regulatory reporting for CO, impact or PUE

The correction model should incorporate cross-referenced measurements from
calibrated power meters or rack-level sensors, ensuring reconciliation of estimated



values with known ground truths. This may involve periodic calibration jobs or Bayesian
smoothing of noisy SNMP signals.

Alert and Dashboard Integration:

Visualizations (e.g., Kibana) and alerts must reflect both corrected and reported values,
especially where large deltas may indicate:

e Firmware bugs
e Device degradation

e Environmentalinfluences (e.g., voltage sag)

This transparency supports operational decision-making and increases trustin
observability outputs.

Extensibility and Modularity:

The correction logic should be encapsulated in modular enrichment components
decoupled from ingestion logic, allowing independent updates, hot-patching, and
vendor-specific adaptations.

4.3.6.4 Limitations and Considerations

While the deviation correction model significantly improves telemetry fidelity in some
environments, it also comes with inherent limitations and practical boundaries.

Apparent vs. Real Power Estimation:

The model estimates real power from apparent power, relying on an assumed or
configurable power factor (PF). Since PF varies with workload type, power supply
efficiency, and transient conditions, the estimation remains an approximation. Without
direct PF telemetry, precise restoration of real power is not possible.

Granularity Constraints in Legacy Devices:

Some PDUs lack per-socket or per-bank telemetry, exposing only total or aggregated
readings.

In such cases:

e Socket-level deviation correction cannot be applied.

e Aggregated estimations may obscure localized power anomalies.

This limits the model’s applicability to device-level or phase-level corrections only.



Firmware/Hardware Override Scenarios

If the vendor releases firmware updates that address the rounding issue or provide
enhanced MIB access (e.g., unquantized values, PF telemetry), the correction model
should be automatically disabled or bypassed to prevent double-modification and
preserve original device fidelity.

Model Suitability Boundaries

The model is intended for operational visibility, anomaly detection, and predictive
analytics. It is not certified for regulatory metering, legal energy billing, or forensic
analysis where |IEC-certified instrumentation is required.

Device-Specific Behavior
Correction logic must account for device-specific variations, such as:

e Different rounding schemes (e.g., ceiling vs. floor)
e Per-phase vs. per-outlet inconsistency
e Manufacturer-specific voltage scaling (e.g., 10x encoded)

Maintenance and Exception Handling

When deviation exceeds a predefined maximum threshold (e.g., 150 W), this may
indicate a hardware fault, configuration drift, or telemetry mismatch. In such cases,
operators should be alerted to investigate further rather than apply blind correction.

4.3.7 Device ldentity Mapping & Source Trust

Each device is uniquely tracked across:

e SNMP OIDs, MAC addresses, and CMDB UUIDs
e Mappings are established and maintained in a Device Identity Registry, aligned
with the CMDB (CMDB)

Data ingestion pipelines cross-validate telemetry against known inventory to prevent
ingestion from:

e Rogue or Unregistered Devices

e Devices notyet approved in change control

e Devices with conflicting or spoofed identity
4.3.8 Data Enrichment Policies

After validation and normalization, data is enriched with contextual metadata pulled
from CMDB:

e Rack location (aisle, row, quadrant)



e Devicerole (core PDU, edge Embedded Monitoring Units, spare)
e Assignhed teams or departments
e Maintenance SLA and lifecycle stage (e.g., “End of Support”)

This enables context-aware alerting, SLA-aware incident routing, and cleaner
dashboards filtered by business responsibility.

4.3.9 Monitoring Data Health

Finally, the observability stack itself is monitored for data quality indicators:

e Missing data gaps per device

e Anomalous volume drops (e.g., expected 10,000 samples/hour > currently
2,000)

e Schema violations (e.g., unexpected new field or missing tag)

e Outdated CMDB mappings triggering errors

Alerts are routed to the team responsible for observability platform health.

4.4 Security Considerations

A robust observability platform is only effective when built on a foundation of strong
security. Data center telemetry involves sensitive infrastructure data, access
credentials, and operational metadata all of which must be safeguarded to ensure
operational continuity, regulatory compliance, and the protection of global data center
landscape.

This section outlines the core security design principles, implementation strategies, and
integration requirements for the observability platform.

4.4.1 Zero Trust Architecture

The platform adopts a Zero Trust model — no component is implicitly trusted, regardless
of whether it resides inside or outside the network boundary. Every communication,
user, or process must prove its identity and authorization at every interaction.

Key Aspects:

e Micro segmentation of telemetry collection, processing, and visualization
services to reduce lateral movement risks.

e Mutual TLS (mTLS) for all internal services - external ingress points use TLS 1.2+
with strong cipher suites.

e Service identity enforcement: Every node, agent, and pipeline component are
authenticated via service accounts or certificate authorities.

e Policy enforcement points placed at ingress (APl gateways, reverse proxies) and
internal traffic chokepoints.



4.4.2 Authentication & Authorization

Every interaction within the platform (e.g., device polling, data ingestion, dashboard
access, config management) must undergo strict authentication and role-based access
control (RBAC).

Components:

e CMDB & data lake: Integrated with corporate IAM (e.g., Identity Authentication
Service) using SAML/OAuth2.

e Data collectors: Service accounts with least privilege for polling and
transformation.

e Kubernetes Cluster: RBAC roles scoped to namespace and workload level
secrets stored using sealed secrets or Vault.

e Fine-grained RBAC policies defined per tool (e.g., Kubernetes, CMDB,
visualization dashboards).

e Separate human access (e.g., analyst dashboards) from machine access (e.g.,
polling agents, CI/CD systems).

e Support token-based access with automatic expiration for RESTful APIs or
Redfish endpoints.

4.4.3 Secure Telemetry Ingestion

Given the reliance on SNMP and/or Redfish:

SNMP:

e Prefer SNMPv3 (authentication + encryption) over SNMPv2c wherever supported.

e Community strings must be rotated regularly and stored encrypted (e.g.,
Kubernetes secrets or Vault).

e SNMP traps are received on dedicated secure channels with strict firewall rules
and traffic filtering.

e Use trap filtering and firewall whitelisting to restrict inbound telemetry.

e Rotate community strings or user credentials every 30-90 days.

Redfish API:

e Use HTTPS/TLS-only endpoints.
e Token-based authentication where possible, with short-lived access tokens.

e Device certificates must be validated against trusted internal certificate
authorities.

e Validate APl inputs against schemas to prevent injection attacks.



4.4.4 Data Integrity and Tamper Detection

Data ingested into ELK data lake and cross-referenced via CMDB is cryptographically
hashed at rest to ensure integrity.

Techniques:

e Use Elasticsearch’s built-in support forimmutable indices with timestamped
logs.

e Implement checksum validation during log ingestion for critical SNMP traps (e.g.,
PDU faults, breaker trips).

e Audit trails must be written to append-only storage for critical infrastructure
components.

4.4.5 Role-Based Access Controls (RBAC) & Segregation of Duties

Each stakeholder group (e.g., DC Ops, RunOps, Finance, Security) is granted access
only to the data and dashboards relevant to their responsibilities.

Governance:

e Read/write segregation (e.g. admins vs. viewers).

e Configuration drift alerts can only be acknowledged or overwritten by authorized
infrastructure engineering roles.

e Visualization dashboards are scoped by department/team with granular index-

level permissions.
4.4.6 Secrets & Credential Management

All secrets (SNMP credentials, Redfish API tokens, webhook keys, kubeconfigs, GitHub
Actions tokens) must be centrally managed, encrypted, and rotated.

Recommended Tools:

e Vault or Kubernetes Secrets (with Sealed Secrets for GitOps).
e GitHub Actions: Avoid storing secrets in plaintext YAML - use GitHub Secrets and
access them at runtime.

4.4.7 Secure CI/CD Pipelines

Automation workflows (e.g., GitHub Actions) that deploy Helm charts, update cluster
configurations, or manage monitoring thresholds must be secured end-to-end.

Controls:

e Use branch protection rules to restrict changes to production pipelines.
e Require code reviews for CI/CD configurations.

e Monitor Cl logs for secrets exposure and enforce secure linting policies.



4.4.8 Monitoring Platform Security

The observability platform must monitor itself to detect anomalies, intrusions, or
unauthorized configuration changes.

Examples:

e SNMP traps for Embedded Monitoring Units access events pushed to data lake
and analyzed with ML for unusual patterns.

e CMDB configuration deltas (desired vs. actual) logged and retained for post-
incident forensics.

e Telemetry from Kubernetes control plane (e.g., APl server logs, etcd access logs)
analyzed via OpenTelemetry collectors.

4.4.9 Compliance & Audit Readiness

All telemetry and configuration data must support internal and external audits,
particularly for frameworks such as:

ISO/IEC 27001, NIS2 (EU), EN 50600 / EN 50701, German EnWG (Energy Industry Act)

Controls:

e Immutable logs with retention policies (e.g., 1 year for critical systems).
e Automated monthly audit reports show observability platform changes, alerts,
escalations.

e Integration with Ticketing Platform GRC for ticket traceability and workflow
documentation.

4.4.10 Network and API Security

e Firewalls and segmentation restrict telemetry flows to only approved
source/destination pairs.

e Rate limiting and DoS protection applied on APl endpoints and SNMP trap
receivers.

e Inputvalidation and schema enforcement at ingestion points to prevent
malformed or malicious payloads.

Optional Enhancements (Pluggable per Maturity Level)

e SIEM integration: Feed telemetry alerts into enterprise SIEMs (e.g. Enterprise
Threat Detection).

e Multi-Factor Authentication (MFA)

e Behavioral analytics: Apply anomaly detection to telemetry patterns for early
breach detection.



4.5 Data Lifecycle Management and Compliance Considerations

As telemetry data volumes grow across the global data center landscape, managing the
lifecycle of observability data is critical. Effective lifecycle management ensures
compliance with regulatory standards, optimizes storage costs, and supports high-
performance analytics.

This platform enforces structured lifecycle practices for telemetry data, aligned with
enterprise policies and European Union regulations such as GDPR, EnWG, and the
Ecodesign Directive & etc.

4.5.1 Retention and Archiving Strategy

Telemetry data is categorized based on type, criticality, and operational usage. The
following table outlines standard retention policies and archiving behavior:

Data Type Retention Period Archival / Rollup Behavior
Power metrics (e.g., kW, 12 months .

KWh per socket/PDU) (standard) Daily aggregates after 30 days
Environmental met‘n(‘:s 6-12 months Monthly aggregatlon and
(temperature, humidity) compression

Indexed for correlation -

Alerts, Events, SNMP Traps | 3-6 months . .
optionally archived

Configuration Snapshots Immutable snapshots retained

12-24 months

(CMDB) for audit compliance

User & dashboard config Anonymized, non-critical,
3 months -

logs deleted after expiration

Lifecycle tags are applied at ingestion time to support automated transitions in Data
Lake (ELK Stack).

4.5.2 Data Classification and Tagging

All telemetry data is tagged with lifecycle metadata for automated policy
enforcement:

e Datatype: (e.g., power, temperature, water, CO,)

e Sustainability relevance: (e.g., CSRD, ERF, Scope 2)

e Jurisdictional tagging: (e.g., DE, FR, EU-wide, non-EU)

e Confidentiality level: (e.g., internal, public-facing, audit-only),
e Lifecycle status: (e.g., real-time, archived, export-ready).

e Origin location: (e.g., DC-WDF-FL1-RACK12)



e Business retention class: (e.g., short-term, audit, long-term)

Integrate tagging directly at the point of ingestion and propagate through data lake or
CMDB overlays for full pipeline visibility.

Tags need to support filtered queries, dashboard scoping, and compliance-aligned
rollup or removal workflows.

4.5.3 GDPR and Regulatory Compliance Considerations in respect to data

The platform should adhere to data handling best practices in accordance with:

e GDPR (EU 2016/679)

e German EnWG (Energy Industry Act)

e EU Ecodesign Directive

e EU Code of Conduct on Data Centre Energy Efficiency

Key compliance measures:

e No personal data (Pll) is collected or stored included such that may identify a
person from naming of accounts, digital identities & etc.

e Anonymization and data minimization principles are applied.

e Logs and telemetry for regulated energy and carbon reporting are retained by
applicable guidelines.

e Immutable logs support audit trails and forensic requirements.

Example Diagram:

= Telemetry Data = Classyfy & Tag

- Power/Environmental - Type
- Alerts, events ——> Collect «—>-0rigin
- Config - Sensitivity

- Other - Retention Class

GDPR & REGULATORY
- Minimize

- Anonymize

RETAIN - Audit
- Retain Data

~ Roll-Up & Hash

DELETE

-Agregate ——> REMOVE —————> v oioen pata

- Validate

4.5.4 Data Integrity During Retention

To maintain the legal admissibility and operational utility of telemetry over time, integrity
must be enforced through:



e Hash chaining or checksum validation at the archival layer (e.g., forimmutable

snapshots),

e Clock synchronization across telemetry-producing agents (NTP/NTS

enforcement),

e Tamper-evident metadata, such as automated origin tagging and time-

sequencing.

This is particularly relevant for CSRD or ISO 50001-aligned energy records, where
historical traceability may be audited several years post-ingestion.

Compliance-Centric Design Goals

Compliance
Requirement

Lifecycle Design Feature

CSRD/ESRS monthly
disclosures

Monthly rollup snapshots of PUE, ERF, Scope 2
telemetry, with CSV export capability

Article 12 EED (annual
uploads to EU database)

Year-based data extraction schemas from the data lake
(e.g., Kibana Saved Queries or APIl-bound Dashboards)

Climate Neutral Pact KPIs

Rolling year-on-year dashboards with built-in deltas and
threshold alarms for self-audit use

EU Taxonomy DNSH proof

Tag historical telemetry by environmental objective and
extract as evidence for financing documentation

4.6 Enterprise Integration Expectations

The observability platform is designhed and intended to integrate with broader enterprise

ecosystems, ensuring data consistency, insights, and alignment with operational

workflows across internal tools and external service platforms.

This section outlines key integration points, governance responsibilities, and expected

data flows across systems such as CMDB, Ticketing, observability layer + correlation

engine, and optional enterprise observability platforms.

4.6.1 Integration Overview

The platform both produces and consumes telemetry, CMDB, and alert data, aiding

timely decisions and long-term strategic analysis.

visualization of reports

System Purpose Integration Method
Asset registry, location - . .
CMDB tagging, config state, Bi-directional sync (via APl /

webhooks)




Ticketing Platform

Incident management,

. , REST API integration Data Lake
alert correlation, audit

Data lake for Central ingestion e.g.
Data Lake enrichment, analytics, OpenTelemetry receiver or
history dedicated API

Observability layer and

Company-wide

observability analytics API-based forwarding from Data

correlation engine backbone Lake
Rule-based alert Connected through
Alerting Framework correlation & OpenTelemetry + metadata
suppression tagging

Optional SIEMs

Security analytics and

Log forwarding with tag filters
event management

4.6.2 CMDB - Source of Truth Alignment
CMDB should provide:

Inventory Management: Data of racks, PDUs, Embedded Monitoring Units,
breakers, outlets, sensors, and logical grouping.

Configuration Metadata: Tracks firmware, desired state, vendor mappings, and
lifecycle data.

Desired State Management: tags and metadata are used for additional
definition of alert thresholds, polling configurations, and compliance rules.

Visualization Plugin Integration:

Supports floorplan visualization, heatmaps, and topology mapping via integrated
plugins.

Enables operations teams to graphically navigate the data center environment,
quickly identify issues (e.g., overheating rack, power imbalance), and correlate
telemetry visually.

Dashboards can reflect telemetry overlaid on physical layouts or rack elevations.

All telemetry collected is cross-referenced against CMDB:

Device ID and location > used to anchor telemetry context

CMDB-to-live mapping - enables drift detection

Tagging and metadata > supports enriched alerting and ticket context

By enriching telemetry with CMDB metadata and exposing spatial context, the
platform supports real-time, intuitive troubleshooting and planning workflows.




4.7 Governance and Change Control (non-technical)

An observability platform is only as effective as the operational policies and ownership
structures supporting it. To ensure maintainability, consistent data quality, and business
alignment, this section defines non-technical governance responsibilities across
stakeholders.

This includes control of thresholds, alert logic, versioning, and data consumption
standards.

4.7.1 Governance Scope

Governance covers three key domains:

¢ Configuration Control: Who defines thresholds, tags, alert logic, polling intervals,
etc.

e Platform Evolution: Who owns the lifecycle of dashboard updates, CMDB schema
extensions, and CI/CD changes.

e Operational Ownership: Who reacts to alerts, investigates data anomalies, and
tunes observability workflows.

4.7.2 RACI Matrix: Platform Ownership (example)

Infra
Security | Engineering
(Cloud/DC)

Activity / RunOps / Infra Platform
Function NOC Architecture Team

Define alert
thresholds
(power, temp,
humidity)

Manage
SNMP/API polling C R A C
& intervals

CMDB schema
extensions

Dashboard
versioning

Ticketing
Platform A I R
integration tuning

Credential
rotation
(SNMPv3, API
tokens)

Compliance
reporting data C C I A
definitions

Table 4: Legend: R = Responsible /A = Accountable / C = Consulted /| = Informed



4.7.3 Example Change Management Policy

Changes to observability configurations (e.g., thresholds, polling, data pipelines)

must follow documented change control procedures:

Proposal Phase: Changes proposed via GitHub Pull Request or internal ticketing.
Review Phase: At least two stakeholder teams must approve (e.g., Platform +
RunOps).

Staging Validation: New configs tested in non-production data lake and CMDB
environments.

Production Release: Via Helm or GitHub Actions, with change log updated.
Rollback: Each change includes rollback procedure and validation window.

4.7.4 Operational Ownership by Platform Zone

Platform Zone Owning Team | Change Cadence Example Artifacts

Data collectors | Platform Weekly SNMP OID changes, new
Engineering polling targets

Data lake Observability Bi-weekly New field mappings, tag
Platform Team parsing rules

CMDB Infrastructure Monthly New device types, rack
Architects location updates

Alerting Platform Team | Ondemand Alert tuning, uptime views,
+ Ops KPl visualizations

Ticketing RunOps Quarterly Alert suppression,

Workflows escalation chains

4.7.5 Configuration Drift & Change Automatic Detection Example

To detect unauthorized or accidental configuration changes:

Asset Information and CMDB desired state is compared nightly to current
telemetry.
Drift reports are auto generated and routed to owners.

Examples:

Rack moved without CMDB update

Device firmware mismatch

Unexpected polling interval change

Alerts are logged and tracked as potential compliance issues.




5 Understanding Composable Infrastructure

5.4 Overview

"Composable" represents a service-centric model where a wide range of resources are
rapidly reassigned to accommodate service components. It integrates software-defined
capabilities into hardware elements to streamline and automate administrative tasks
involved in deploying and managing disassembled infrastructure.

In brief, “Composable infrastructure is an information technology framework where the
physical resources are treated as services.”

Composable Infrastructure

Applications and tools

-~

h 4

Management API

[ Logical resource pool ]

Composing software

! ! !

Compute Storage Network

5.4.1 Hardware Layer

The Hardware layer is the foundational components targeted components in this case
Embedded Monitoring Units, PDU’s, Outlets, Brakers, Phases, Temperature and
humidity sensors that form the basis of the infrastructure.

5.4.2 Composable Software Layer

The Composable software layer assists as an abstraction layer for the physical
components, arranging them into logical resource pools that can be accessed through
the API, SNMP or other data mechanisms. This software is equipped with
programmable, configurable, and self-correcting functionalities. It can autonomously
orchestrate the essential logical resources to meet specific requirements. It has the
capability to utilize templates that offer preconfigured setups tailored for specific use
cases. This layer relies heavily on software-defined control.



5.4.3 APIl, SNMP Layer

The APl and SNMP play a crucial role by enabling access to the hardware resources
within the infrastructure. It acts as a consolidated interface for executing a wide range of
operations, encompassing tasks like reporting, alerting, searching, managing inventory,
provisioning, conducting updates, and performing diagnostics.

5.5 Application or End-User Usage Layer

The application layer refers to the topmost layer in the architecture, where end-user
applications or services interact with and utilize the underlying infrastructure and
resources.

5.6 Core Principles

The platform is built on several core principles that define its approach to data center
monitoring, observability, architecture and resource management. These principles help
to understand and implement the platform effectively.

Principle Name Description

Infrastructure abstracts physical hardware components, such
as Embedded Monitoring Units, PDU’s, Sockets, Sensors,
Resource Pools breakers & etc., into resource pools. Resource pools are
established by aggregating these hardware resources, thereby
enabling their availability.

Infrastructure and platform are built upon software-defined
Software-Defined technologies for its control and management. The management
Control and availability of resources controlled by software rather than
being tightly bound to specific hardware configurations.

Resources can be allocated dynamically to different target
Dynamic Allocation | objects or devices as needed, and these allocations can be
adjusted in real-time.

This solution aims to provide APIs (Application Programming

Interfaces) that allow administrators to programmatically
API-Driven

Management

manage target devices, addressing and data resources.

API-driven management enables automation, orchestration,
and seamless integration with other IT management systems.




Resource Isolation

Composable infrastructure enables resource isolation, ensuring
that each workload or application has dedicated resources for
performance, security, and compliance purposes. Resource
isolation is achieved through software-defined resource
allocation.

Elasticity and
Scalability

Composable infrastructure is designed to be elastic and
scalable, allowing organizations to easily scale up or downin
response to changing demands. This scalability is achieved by
adding or removing resources from the available pools.

Automation and
Orchestration

Automation is a central principle of composable infrastructure,
enabling the execution of predefined tasks and workflows
without manual intervention.

Orchestration coordinates the allocation and configuration of
resources to meet specific requirements.

Resource Efficiency

Aims to optimize resource utilization, minimizing waste and
underutilization. By efficiently allocating resources so the
organizations can reduce both capital and operational costs.

Flexibility and
Adaptability

Flexibility and adaptability are key principles, ensuring that the
infrastructure can respond to changing business conditions and
technology requirements.

Interoperability

Ensures interoperability, enabling different systems, devices,
and applications to work together seamlessly. This principle
supports the integration of various technologies and platforms,
allowing for cohesive operation and communication across
diverse environments. This is achieved using open standards,
protocols, and APls, enabling integration across heterogeneous
environments and fostering a cohesive ecosystem.




6. Implementation Strategy & Practical Considerations
for Real-World Adoption

The successful implementation of a data center observability platform requires more
than selecting technical components or deploying agents. Itis a cross-disciplinary
endeavor involving infrastructure engineering, operations management, regulatory
compliance, platform governance, and strategic business alignment. Organizations
differ in maturity, architecture, and constraints - hence, a single prescriptive approach is
neither feasible nor desirable.

This section provides a practical, adaptable framework that enables organizations,
whether operating a hyperscale data center or a hybrid co-location site, to craft their
own observability roadmap. The guidance herein is not tool-specific, but concept-
driven, combining technical realism, organizational foresight, and regulatory awareness.

Rather than asking "What tool should | deploy first?", we encourage stakeholders to
ask:

- What decisions must be observable to improve outcomes?

- Which teams rely on telemetry for critical processes?

- Howto connect data collection with governance, compliance, and strategic
impact?

We address a broad spectrum of roles:

- Operators will need guidance on integrating telemetry with timely workflows.

- Architects will need information on how to design resilient, layered observability
stacks.

- Compliance teams will need aid on how metrics map to regulatory obligations.

- Executives will need insight into how observability supports business continuity
and ESG targets.

The subsections below follow a maturity-aware progression, designed to help any
organization assess its context, map capabilities, structure architecture, and ensure
long-term alignment between systems, users, and regulatory demands.

6.1 Organizational Readiness — Contextual definition

Before deploying any observability platform, organizations must prepare beyond just
infrastructure and software readiness. The success of observability depends on whether
the organization is structurally and strategically aligned to use it effectively. This means
clarifying who owns what, what compliance obligations exist, and how observability
insights will influence real decisions.



This section introduces a foundational lens to assess readiness. Rather than rushing

into tool selection or protocol integration, stakeholders should examine internal

alignment across technical, organizational, and compliance domains.

Design Insight: An observability platform implemented without organizational
readiness risks becoming an underutilized data silo. Without clarity on thresholds, roles,
and escalation paths, alerts may be ignored, and telemetry may never reach the right

decision-makers.

Framing Questions by Dimension

The table below offers a guided peek to facilitate cross-functional discussions. Each
dimension uncovers crucial insights that determine whether observability will be useful

or merely visual.

Dimension

Guiding Questions

Why It Matters

Organizational

Who owns the racks, PDUs, and
EMUs? Who approves observability
changes?

Clarifies accountability and
change control boundaries.

What telemetry exists today? Which

Informs tool compatibility

tracked or reported?

Technical protocols (e.g., SNMP, Redfish) are and defines the potential

supported? data pipeline.

Are there defined alert thresholds? Is - .

. . Ensures observability alighs

Process there a CMDB integration or an . .

S with operational workflows.

incident response process?

What regulations apply (e.g., EED, Enables early planning for
Compliance CSRD)? What metrics must be regulatory alignment and

audit readiness.

Data Maturity

Are there consistent naming
conventions? Is the asset metadata
clean, current, and structured?

Supports accurate alerting,
filtering, and long-term
automation.

End Users

What do different user groups (e.g.,
operations, planning, compliance,
executives) expect to see or acton?

Ensure dashboards and
alerts are purpose-built, not
generic.

Example: Multi-Stakeholder Kickoff in a Co-Located Environment.

In a large-scale co-located facility shared by multiple clients, observability readiness
begins with determining who owns what equipment and telemetry rights. If the hosting
provider controls the infrastructure but tenants demand energy visibility, the

observability platform must be positioned as a shared service with clear data contracts.




Organizational Need: Aligh co-location operator and tenant expectations.
Compliance Need: EnWG in Germany mandates transparency for facilities 2 500 kW.

Process Alignment: Establish shared incident flows and visibility scopes for tenant
dashboards.

Maturity Reflection
Even sophisticated organizations may have gaps.
For example:

- Istelemetry polled but unused due to lack of thresholds?
- Do security teams have visibility into telemetry access control?
- Does procurement know which assets can produce observability data?

Operational Implication: Readiness assessments often uncover unowned telemetry
devices that produce useful metrics but are not mapped to any team’s responsibility.
Making these relationships explicit is a critical precondition for platform sustainability.

6.2 Implementation Planning Framework

Data center observability cannot be treated as a plug-and-play deployment. Itis a
strategic capability that matures over time through structured planning, iterative
deployment, and continuous refinement.

This section introduces a four-phase implementation framework designed to help
stakeholders translate strategy into actionable delivery while accommodating
site-specific realities, tooling constraints, and evolving regulatory demands.

The framework is flexible enough to suit diverse organizational profiles—from a single-
edge site to multi-region enterprise networks—yet anchored in universal
implementation disciplines such as governance, telemetry alignment, and value

mapping.

We propose organizing the implementation into four tightly interlinked phases. These are
not simply sequential steps, but interdependent cycles that may iterate as business
needs and technical capabilities evolve.

Phase Objective

1. Contextual Clarify the intent, operational boundaries, and business drivers of
Definition the observability initiative.

2. Capability Map the current-state telemetry environment, available protocols,
Assessment and data quality baselines.




3. Platform Define the logical structure, governance model, data flows, and
Architecture integration touchpoints.

4. Operational | Embed observability into daily operations, compliance frameworks,
Integration and long-term planning cycles.

Each phase is elaborated in more detail below with corresponding examples and
success criteria.

6.2.1 Phase 1 Contextual Definition
Goal: Define the “Why,” “What,” and “Who”

The first phase addresses intentionality: What problems are we solving? Who benefits?
What outcomes define success?

Key Activities:

- Use Case Mapping: Examples include power monitoring at the socket level,
ambient temperature alerts, or firmware drift detection.

- Stakeholder Alignment: Identify data consumers and sponsors—data center
ops, cloud platform teams, RunOps/NOC, sustainability, finance.

- Driver Analysis: Define the legal, operational, or strategic reasons behind the
platform. These could include EU regulatory compliance, internal audit
mandates, or uptime SLAs.

Practical Tip: Use a stakeholder canvas to record expectations, risks, and
dependencies for each stakeholder group. This prevents technical solutions from
outpacing organizational needs.

Example: In a newly built data center intended to serve regulated industries, the primary
business driver may be auditability of temperature and energy metrics. Thus,
observability success is measured by compliance report generation, not only uptime
visualization.

6.2.2 Phase 2: Capability Assessment

Goal: Understand Your Starting Point

Before architecture decisions, understand what telemetry already exists, its reliability,
and how to integrate it.

This phase evaluates the technical landscape to determine telemetry potential and
integration feasibility.

Itincludes:



e Asset Taxonomy: Classification of PDUs, EMUs, sensors, devices and racks
based on telemetry exposure (SNMP v3, Redfish, etc.).

¢ Protocol Compatibility Mapping: Identification of supported communication
protocols and data export mechanisms.

e Data Availability and Quality: Review of existing naming conventions, time-
stamp policies, and data completeness.

Example: In a multi-vendor environment with legacy PDUs supporting only SNMP v2c¢, a
transformation plan may involve standardizing telemetry through intermediate
collectors with normalization logic.

6.2.3 Phase 3: Platform Architecture
Goal: Define the Engine Behind Observability

This phase lays the foundation of how telemetry is ingested, transformed, stored,
enriched, visualized, and acted upon.

The observability stack is logically structured to enable modularity, scalability, and
traceability.

Key considerations include:

e Datalngestion Design: Use of collectors (e.g., Telegraf, OpenTelemetry) to
receive telemetry, normalized via schema enforcement.

e Contextual Enrichment: Tagging of data with asset metadata (location, vendor,
lifecycle stage) from an authoritative CMDB.

e DataTiering: Categorizing telemetry into operational, compliance-critical, and
archival layers.

e Governance Principles: Ownership of thresholds, alert rules, and lifecycle
policies across domains.

Best Practice: The architecture should separate telemetry tiers (e.g., operational alerts
vs. sustainability reports) and use metadata to drive filtering and alert scoping.

Example: For operations, architectural uniformity is maintained via GitOps-based
deployment, with localization handled through metadata-driven dashboards and region
& system-specific alert profiles.

6.2.4 Phase 4: Operational Integration

Goal: Make Observability Actionable and Sustainable

No observability platform is complete until it is used by actual stakeholders and
supports real-world decisions.

The final phase ensures the observability platform is embedded in workflows and
contributes to business continuity, strategic planning, and regulatory readiness.



Key Practices include:

- Alert Management: Integration with incident management systems (e.g.,
Ticketing), including role-based escalation paths.

- Drift Detection: Periodic comparison of real-time telemetry with desired state
declarations in the CMDB.

- KPI Reporting: Automated export of PUE, renewable share, energy footprint per
zone, mapped to EU regulatory requirements.

- Audit Support: Immutable logs, version-controlled configurations, and change-
tracking systems enable compliance with ISO 27001, NIS2, and CSRD.

The implementation framework is not about technology first - it's about context,
alignment, and structured deployment. Without a shared purpose and maturity-aware
approach, observability risks becoming fragmented or underused.

6.3 Implementation Scenarios

Not all organizations begin their observability journey from the same starting point.
Infrastructure age, protocol diversity, organizational structure, regulatory demands, and
internal capabilities all shape whatis possible, and what is pragmatic.

This section presents two perspectives on implementation scenarios:

Maturity Progression (“Crawl-Walk-Run-Fly”’): How organizations typically evolve
over time in observability sophistication.

Situational Profiles: Representative deployment conditions (e.g., legacy, greenfield,
sustainability-driven) and how observability must adapt accordingly.

By structuring implementation scenarios in this dual view, we help organizations
benchmark where they are and plan realistic next steps.

6.3.1Maturity Scenarios — How to Grow Over Time

Stage | Telemetry Scope Process Maturity Business Impact
PDU and temperature Manual threshold Partial visibility, limited
Crawl | data from a single site, checks, no CMDB response automation,
basic SNMP polling linkage frequent alert fatigue
Socket-leveland EMU | Initial CMDB mproved regional
. . . oversight, SLA
Walk | telemetry across integration, static alert L
. . S monitoring, reduced
multiple sites rules, basic tiering .
noise
End-to-end telemetry: Role-based access, Predictive maintenance,
Run y: CI/CD pipelines, SLA & ESG conformance,
PDUs, racks, sensors, . . .
structured escalation continuous improvement




drift detection

firmware, configuration

Fly enrichment, full
compliance

instrumentation

Cross-site analytics
with ML, timely signal

GitOps observability,
closed-loop
automation, regulation-
aware dashboards

Enterprise-wide energy
optimization, adaptive
compliance, business-
aligned observability

NOTE: Each stage introduces new system dependencies (e.g., data enrichment at
“Walk” requires CMDB reliability), and new stakeholders (e.g., ESG officers become

relevant at “Run”). The maturity journey is as much about governance and culture as itis

about data pipelines.

6.3.2 Implementation Conditions — Real-World Scenarios

These scenario profiles reflect real-world deployment challenges and constraints,

helping clients frame observability in a practical, context-sensitive way.

Scenario

Characteristics

Observability Focus

Legacy Co-Location
Environment

Older hardware, limited
SNMPv2 support, manually
maintained asset records

Establish a minimum
viable telemetry, normalize
inputs, enable socket-level
alerting with collector
throttling

Greenfield Deployment
(Edge or Cloud)

Brand-new build, Redfish
and OpenTelemetry native,
KPI-driven design

Implement full
observability stack from
day one, enforce
structured tagging, track
renewable energy input

Multi-Tenant DC with SLA
Commitments

Shared infrastructure,
customer-specific SLAs,
carbon tracking required

Tenant-tagged telemetry
streams, SLA-aware alerts,
customer-facing
dashboards, traceable KPI
histories

Sustainability Compliance
Site

Subject to EU taxonomy,
water, cooling, and
renewable targets

Integrate facility data,
enforce ESG metric
capture, link drift detection
with sustainability controls

Clarification:




- Legacy scenarios often require architectural compromises (e.g., less frequent
polling, read-only integrations).

- Greenfield builds offer ideal conditions for reference architecture deployment
but also carry a blank-sheet burden - no legacy constraints, but also no
institutional experience or historical data.

- Multi-tenant environments introduce the challenge of data segmentation,
ensuring observability is actionable and compliant for each tenant without
risking leakage or misattribution.

- Sustainability sites push observability beyond IT into facility, energy, and ESG
domains, demanding interoperability with non-standard systems (e.g., chillers,
water meters, or power purchase agreements).

Best Practice: Organizations operating under multiple conditions (e.g., a mix of legacy
and edge sites) should define site-level observability tiers. Each site is then monitored
according to its own capabilities and strategic value, avoiding one-size-fits-all
deployments.

6.4 Observability Success Drivers

An observability platform’s value is not defined merely by its tooling or data ingestion
rates. True success is measured by its ability to align with organizational goals,
regulatory demands, and operational realities. This section highlights the underlying
drivers that determine whether observability efforts scale from pilot projects to
institutionalized platforms.

These drivers are not “features”, they are architectural and governance enablers that
define the sustainability, relevance, and impact of observability across the enterprise.

The effectiveness of implementation is driven by several organizational and structural
success drivers:

Driver

Why It Matters

How to Implement

Telemetry-CMDB
Convergence

Context-aware insights,
root cause analysis

Bi-directional sync with
CMDB, enriched alerts

Granularity by Purpose

Cost-efficient and
actionable monitoring

Align polling intervals and
retention per use case

Lifecycle Governance

Compliance, auditability,
clarity

Define policies for data
tiers, access roles, and
version control

Stakeholder Visibility

Adoption and operational
value

Role-specific dashboards
and reporting outputs




Automated anomaly
detection on telemetry
pipelines

Integrity, trust, quality

Data Health Monitoring
assurance

6.4.1 Telemetry-CMDB Convergence

Aligning live data with asset metadata ensures consistency, drift detection, and
accurate alerting. Observability becomes fragile when telemetry exists without
metadata context.

Example: Socket-level power readings are useful, but without knowing which rack,
which team, or which environment the data belongs to (via the CMDB), the insight is
incomplete.

Best Practice:

e Ensure every telemetry stream is mapped to a canonical asset in the CMDB

e Enable bi-directional sync so that configuration changes (e.g., PDU swap) update
telemetry logic automatically.

e Use CMDB tags (e.g., lifecycle stage, business unit, vendor) to enrich alerts and
support role-specific dashboards.

6.4.2 Granularity by Purpose

Tailoring data collection depth to the use case (e.g., rack-level for capacity vs. zone-level
for compliance). Not all metrics require the same level of precision or frequency.

Example: A rack-level temperature reading might suffice for compliance, but socket-
level load data is necessary for incident prevention.

Consideration:

e Granular telemetry (e.g., socket load every 5 seconds) can be valuable, but
expensive to store and analyze.

Align granularity and retention policies with the purpose:

e Regulatory > summarized and archived
e Operational » real-time and short retention
e Predictive > enriched with tags, used for training models

6.4.3 Lifecycle Governance

Retention, archival, and access policies ensure observability aligns with regulatory and
operational norms. A successful observability platform has clear policies for:

e Retention: How longis the telemetry kept?
e Archiving: Which datais rolled up? Which data is deleted?



e Access: Who can view or modify dashboards? Who owns the configuration?
e Versioning: Are dashboard and schema changes tracked?

NOTE: This is especially critical in regulated environments, where reporting periods and
audit trails are mandatory. Many organizations fail audits not because they lack the data,
but because they cannot prove its completeness or origin.

6.4.4 Ease of Use

Role-specific dashboards and controls support both technical users and executive
sponsors. Atechnical sound platform is irrelevant if its output is unreadable to key
stakeholders.

Success Factor:

e Tailor dashboards, alerts, and reports to audience needs:
e DC Ops > root cause analysis

e Procurement - utilization reports

e Sustainability » CO, perrack

e Executives » compliance and ROl summaries

Good observability is not about showing everything, it is about showing the right thing to
the right person in the right format.

EXAMPLE: A capacity planner might want phase balance per row over time, while a
sustainability officer needs to aggregate kWh per building per month with renewable
split.

6.4.5 Trust and Data Health Monitoring

Even the best observability platform must observe itself.
Critical Practices:

e Monitor data gaps, unexpected value patterns, and telemetry volume anomalies.

e Alerton schema violations (e.g., missing timestamps, invalid tags).

e Track pipeline drift, where enrichment logic may silently fail due to upstream
changes.

This is the foundation of trustable observability - systems where telemetry is not just
ingested, but audited and verifiable.

6.5 Interoperability and Compatibility Considerations

Interoperability is not just a technical challenge - it is a business enabler. As data
centers evolve into federated, compliance-driven, and customer-facing ecosystems,
ensuring compatibility across heterogeneous systems becomes foundational to
platform sustainability and auditability.



Modern data center environments are characterized by their diversity: multiple vendors,
evolving firmware baselines, protocol mismatches, and coexistence of legacy and next-
generation equipment. An observability platform must therefore not only operate across
this heterogeneity, but it must also bridge it intelligently.

In large-scale, multi-vendor, or hybrid data center environments, interoperability and
compatibility are not nice-to-haves they are essential for platform viability.

Observability needs to:

e Diverse protocols and data formats
e Varying firmware maturity and telemetry granularity
e Mixed ownership models (e.g., co-location, cloud edge, internal IT)

This section outlines how to ensure technical interoperability while minimizing
fragmentation, avoiding data silos, and achieving coherent visibility across
heterogeneous infrastructure.

6.5.1 Protocol Interoperability

Data centers contain devices with vastly different capabilities from 10-year-old
SNMPv2c PDUs to next-gen servers supporting Redfish and OpenTelemetry.

While modern architectures may favor Redfish or OpenTelemetry, SNMP remains
dominant in legacy and co-location environments. This duality requires observability
platforms to be “bilingual” - capable of ingesting structured, modern APIs while
gracefully handling older, less secure formats.

Telemetry data is typically sourced from devices supporting a mix of:

SNMP (v2c, v3): Ubiquitous but varies in implementation and security (v3 preferred for
encryption/authentication).

Redfish API (REST-based): Common in newer hardware for power/thermal telemetry.

OpenTelemetry: Typically used for application-level metrics but increasingly relevant
for infrastructure observability.

Custom REST APIs: Proprietary interfaces exposed by vendors or co-location providers.
Syslog & SNMP Traps: Event-driven telemetry requiring near-real-time ingestion logic.

Best Practice: Implement an abstraction layer in the ingestion pipeline that
standardizes input (e.g., Telegraf > Logstash > Unified Schema) to decouple
downstream systems from protocol-specific behavior.

6.5.2 Semantic Compatibility & Data Normalization

Protocol support alone does not guarantee interoperability. Semantic mismatches,
where identical metrics are labeled, formatted, or timestamped differently, are a leading



cause of faulty alerts, data duplication, and operator confusion. This subsection
illustrates how to bring coherence across a fragmented telemetry landscape.

Mismatch Type Example Mitigation Strategy

Unit inconsistency Power reported in Wvs. kW | Normalize during ingestion
using a predefined
transformation dictionary

Inconsistent naming pdu_socket_01_kwh vs Enforce naming schema
Outlet03_Consumption

Timestamp granularity Millisecond precision in Align to a reference clock.
one device, 30s pollingin assign collection
another timestamp if native

timestamp is missing

Firmware metric drift New firmware exposes Maintain a compatibility
different OID trees or registry by device model +
changes field semantics firmware in CMDB

6.5.3 CMDB Integration for Source Consistency

A mature CMDB is not just a passive inventory - it becomes an active compatibility
broker.

CMDB Responsibilities:

e Store metadata such as:
o Supported telemetry protocols
o Device model and firmware version
o Ownership, SLA level, and business-criticality
e Track configuration drift: actual vs. expected telemetry behaviors
e Define which devices can and should be polled for specific metrics

Example: Before enabling phase load monitoring, the platform checks in CMDB whether
the device:

e Supports SNMP v3
e Has phase metrics enabled in the current firmware
e Belongs to a site with advanced analytics enabled

This ensures intentional monitoring, not blind data scraping.

Real-World example: In one software-operated site, CMDB was extended to include
firmware compatibility metadata. This enabled ingestion pipelines to auto-select polling



templates based on device model, reducing false alerts by 38% and speeding up

onboarding of new devices by 62%.

6.5.4 Interoperability with Enterprise Systems

Observability platforms are not islands. They must interoperate with enterprise systems

for incident management, compliance, and analytics.

Example Integration points:

compliance

System Function Integration Method
. Incident & change REST API, CMDB sync,
Alerting . .
management ticketing
GRC Platforms Governance, risk, Reporting pipeline or

export

Observability layer and
correlation engine

Data lakes, trend analysis

Logstash > Elasticsearch
forwarding

Cl/CD

Observability-as-code

GitHub Actions, Helm,
Terraform

SIEM

Security incident detection

Syslog forwarding, log
tagging

Data Visualization (e.g.,
Kibana)

Dashboards for
stakeholders

Elasticsearch sync,
metadata tagging

Regulatory Relevance: EU reporting regulations (e.g., EED, CSRD) increasingly

mandate interoperability - e.g., the ability to export metrics in standardized formats
(JSON, CSV, XML) to government databases or auditors.

6.5.5 Legacy and Vendor-Locked Devices

In real-world environments, total compatibility is rare. A platform must offer graceful

degradation:

e For non-instrumented racks: Use metadata tagging only

e Forlegacy SNMPv2c: Poll via gateway collectors with throttled frequency

e For proprietary systems: Request vendor integration plugins, or treat as passive

data sources

Strategic Guidance: Maintain a "telemetry tier" classification:

Tier 1: Fully instrumented with real-time polling and event support

Tier 2: Partially instrumented or legacy-polled with relaxed alerting




Tier 3: Inventory-only, requiring manual data entry or offline updates

Summary of Compatibility Challenges & Mitigations

Challenge Mitigation

Collector abstraction layer, protocol

Protocol mismatch .
tagging

. . Normalization schema, CMDB
Semantic drift

enforcement
Firmware inconsistency Compatibility matrix, ingestion validation
Legacy devices Tiered telemetry model, passive tagging
Regulatory exports Format standardization, audit logging

As industry moves toward unified observability fabric standards (e.g., OpenConfig,
DMTF Redfish extensions), platform architecture should anticipate convergence.
Investing in modular, schema-aware ingestion and CMDB-driven normalization will not
only ease today’s interoperability issues but also position the platform for adaptability
as standards evolve.

6.6 Practical Adoption Tips by Stakeholder Type

The success of an observability platform is not solely contingent upon its technical
sophistication. Equally critical is the diverse roles that engage with, govern, and depend
on the platform outputs. From data center operators to executive leadership,
stakeholders have distinct concerns, expectations, and success criteria.

This section provides a structured overview of how different stakeholder groups can
interpret, adopt, and benefit from observability - highlighting practical considerations,
decision factors, and real-world enablers. Rather than presenting generic best
practices, we translate stakeholder needs into implementation touchpoints that
enhance relevance, foster alignment, and ensure long-term adoption.

6.6.1 Data Center Operations Teams

For facility engineers and on-site operations staff, observability must move beyond
passive monitoring and become a tool for proactive management.

Their primary interests often include:

e Fault detection and resolution (e.g., thermal hotspots, circuit imbalances)
e Capacity and load forecasting



e Compliance with operational SLAs (e.g., temperature, uptime, power safety
thresholds)

Operational Consideration: Operators require telemetry thatis both granular and
actionable. Socket-level monitoring is valuable only when paired with intuitive
dashboards, actionable alert thresholds, and clear escalation paths.

Adoption Enabler: Co-locate observability dashboards, integrate alert flows into
NOC/RunOps workflows, and avoid data overload by filtering to role-specific signals
(e.g., only alerts triggered in the operator site zone).

Example: In one regional hub, timely energy telemetry helped an operator detect that
redundant power strips were being underutilized. Through minor rack layout changes,
they achieved 8% better load balancing, reducing thermal hotspots and risk of breaker
trips.

6.6.2 Platform and Infrastructure Architects: Designing for Modularity and
Scalability

Infrastructure architects must ensure that observability stacks are modular,
maintainable, and adaptable across heterogeneous environments.

Their focus is strategic and structural:

e Integration patterns (e.g., GitOps, CI/CD observability-as-code)
e Modular component selection (e.g., choosing Telegraf over custom scripts)
e System-level consistency across sites and platforms

Architectural Concern: Observability solutions that are hardcoded to local
configurations or lack clear modularity quickly become technical debt. Architects must
define common schemas, telemetry pipelines, and governance layers to avoid
fragmentation.

Adoption Enabler: Provide reference implementations, validate platform components
via architecture review, and ensure observability aligns with existing DevOps and
platform operations frameworks.

Example: In a distributed setup spanning co-location and edge data centers, the
architect enforced a shared metadata taxonomy (via CMDB) to ensure that all telemetry
adhered to a consistent format. This unlocked cross-site analytics and reduced
integration issues across observability layers.

6.6.3 Compliance and Sustainability Officers: Verifiability, Traceability, and
Audit-Readiness

For compliance stakeholders, observability is not just a technical capability - itis a
regulatory instrument. Their primary interest is proving that operations adhere to legal



and environmental standards, such as the European Energy Efficiency Directive (EED),
Corporate Sustainability Reporting Directive (CSRD), or local energy codes.

Compliance Challenge: Raw telemetry alone is insufficient for audits. Data must be
time-stamped, normalized, and traceable back to physical infrastructure components
and operating conditions.

Adoption Enabler: Integrate observability pipelines with GRC systems and data export
workflows. Use version-controlled dashboards for regulatory KPIs (e.g., PUE, renewable
energy share). Establish clear data retention policies and immutable logs aligned with
audit timelines.

Example: At a sustainability-driven site in the EU, automated telemetry from PDUs and
EMUs was combined with facility sensor data to generate monthly Scope 2 emissions
reports, directly fulfilling CSRD requirements for energy disclosure.

6.6.4 Procurement and Asset Management: Lifecycle Intelligence and
Capacity Planning
Procurement teams benefit from observability through better lifecycle planning and cost

efficiency. Knowing which racks are overprovisioned, underutilized, or aging helps
inform purchasing decisions and contract renegotiations with co-location providers.

Procurement Insight: Telemetry can be used to correlate usage patterns with asset
lifespans, identify redundant equipment, and optimize refresh cycles.

Adoption Enabler: Provide procurement with tailored dashboards (e.g., average power
draw vs. rated capacity per vendor) and link telemetry data with asset inventory systems
to enable financial forecasting and SLA optimization.

Example: By analyzing load distribution across PDUs, one enterprise discovered
consistent underutilization of a high-capacity rack zone. This insight enabled them to
downscale their lease.

6.6.5 Executive Leadership: Strategic Alignment and ESG Impact
Executives are not typically interested in raw telemetry - but they are deeply invested in
the business impact of observability.

This includes:

e Risk mitigation through early failure detection
e ESG reporting credibility
e Strategic facility expansion decisions

Leadership Focus: Observability must communicate high-level narratives: “Are we
compliant?”, “Are we efficient?”, “Are we at risk?”



Adoption Enabler: Develop executive-level dashboards with quarterly trends, predictive
forecasts (e.g., PUE projections), and regulatory alignment indicators. Link observability
metrics to ROI (e.g., savings from deferred expansion, energy efficiency gains).

Example: In a quarterly board meeting, telemetry insights supported a decision to defer
data center expansion by showcasing how improved rack consolidation extended
capacity greatly.

6.7 Lifecycle Sustainability and Long-Term Maintainability

Establishing an observability platform is not merely a technical milestone - itis the
initiation of a governance lifecycle. Once deployed, the platform must remain
adaptable, interpretable, and actionable in the face of organizational change,
infrastructure evolution, regulatory updates, and shifting stakeholder priorities.

This section outlines the major categories of sustainability risks and provides a forward-
looking framework to mitigate long-term degradation in observability platform relevance,
performance, and trustworthiness.

6.7.1 Understanding Sustainability in Observability Context

Sustainability in observability refers not only to environmental considerations, such as
minimizing storage and computing waste, but also to the organizational, procedural, and
epistemic longevity of the platform.

Key questions arise:

e Will the system still make sense when key personnel depart?
e Will telemetry continue to align with business needs as infrastructure evolves?
e Willdashboards and alerting policies remain valid under new regulatory regimes?

These questions frame observability as a dynamic system of knowledge, not just a static
monitoring toolkit. Like any socio-technical system, observability requires active
stewardship to remain resilient, interpretable, and valuable.

6.7.2 Key Categories of Sustainability Risk

Sustainability risks fall into six major domains, each with cascading operational

implications:
Risk Domain Description Typical Manifestation
Eﬁ;/:]czzp:rattgs;[gmware Values shift or disappear,
Telemetry Drift ges, . potogy dashboards become
changes silently alter
outdated
telemetry




Semantic Decay

Misalignment between
data meaning and
stakeholder interpretation

Dashboards are misread;
alerts are misunderstood

Governance Gaps

No clear ownership of
thresholds, policies, or
platform evolution

Alert noise increases,
platform becomes siloed

Tooling Fragmentation

Parallel tools emerge with
uncoordinated scopes or
duplication

Shadow monitoring
solutions develop, wasted
resources

Regulatory Misalignment

Legal frameworks evolve
(e.g., CSRD, EED) but
telemetry stays static

Non-compliance, reporting
failures

User Disengagement

Stakeholders stop trusting
or using observability
outputs

Underused systems,
reduced ROI, false sense
of security

6.7.3 A Sustainability Framework for Observability

To proactively manage these risks, we propose a Sustainability Framework that
integrates platform engineering with organizational learning and regulatory foresight.

It consists of five interlinked principles:

1. Temporal Validity of Telemetry

Challenge: Device output change over time due to firmware upgrades or hardware

replacements.

Mitigation: Implement a telemetry validation pipeline that cross-checks incoming data

against CMDB-logged expectations (e.g., OIDs, unit formats, update frequency).

2. Intent Preservation via Metadata

Challenge: Dashboards and alerts lose context if creators leave, or documentation is

lost.

Mitigation: Mandate metadata tagging for all observability assets (dashboards, alerts,

transforms), capturing "why" alongside "what." For example, a tag like {"compliance-

metric": "EED-AnnexVII-1"} ensures intent persists.

3. Embedded Governance Anchors

Challenge: Without ownership models, observability becomes fragmented.




Mitigation: Assign platform Product Owner (PO) role and domain-specific telemetry
stewards. Require quarterly reviews of alert thresholds, metric utility, and system
integration fidelity.

4. Regulatory Horizon Scanning
Challenge: Regulations change faster than platform updates.

Mitigation: Link GRC (Governance, Risk, Compliance) workflows with observability
design. Ensure dashboards are annotated with regulation-specific references (e.g.,
"CSRD-Scope3-C0O2") to ease auditability.

5. Participatory Review Mechanisms
Challenge: Platforms drift if users are passive.

Mitigation: Introduce structured feedback loops (e.g., observability retrospectives,
design review boards). Create usage analytics to detect declining interaction and launch
targeted re-engagement.

6.7.4 Example: Sustainability Breakdown in a Multi-Site Data Center

In one enterprise deployment, a leading European data center operator experienced a
gradual erosion of observability value over 18 months. Initially laid for its socket-level
energy insights, the platform suffered from the following:

e Firmware upgrades invalidated 20% of SNMP-based metrics.

e No one noticed missing data for 7 weeks due to absent meta-alerting.

e New compliance rules (EU 2023/1791) required reporting formats unsupported
by the system.

e Stakeholders began exporting raw data to Excel for custom reporting, leading to
shadow systems.

A sustainability audit revealed that while telemetry ingestion was technically functional,
governance, documentation, and intent alignment had eroded. A recovery plan was
introduced involving metadata backfilling, CMDB validation automation, quarterly
governance councils, and integration of legal compliance roles into the observability
team.

6.7.5 Strategic Recommendations

To institutionalize sustainability, organizations should treat observability not as a
finished product but as a living capability.

Recommended practices include:

Adopt Lifecycle Audits: Every 6-12 months, assess telemetry integrity, alert fidelity,
stakeholder engagement, and regulatory alignment.



Define an Observability Constitution: A lightweight policy artifact describing
principles, thresholds for action, naming conventions, and governance roles.

Bake Sustainability into Procurement: Require vendors to document telemetry
support per firmware, including change policies and backward compatibility.

Formalize Change Notifications: Connect firmware updates or site topology changes
to alert platform stewards via CMDB triggers or ITSM workflows.

Long-term observability success depends less on initial tooling selection and more on
how well an organization governs, interprets, and adapts its telemetry ecosystem over
time. Without proactive lifecycle management, even the most advanced observability
stack will drift into obscurity, becoming a shelfware platform of latent potential. By
embedding governance, metadata clarity, and regulatory responsiveness into the
platform’s DNA, organizations ensure that observability becomes not just sustainable,
butindispensable.

6.8 Common Pitfalls and How to Avoid Them

While the implementation of a data center observability platform promises enhanced
transparency, resilience, and regulatory alignment, real-world deployments are
frequently derailed by predictable, yet preventable failures. These missteps span across
technical, organizational, procedural, and cultural domains. Understanding these
pitfalls not only strengthens project outcomes but also builds institutional resilience
against future disruptions.

This section categorizes some of the most common implementation errors, analyzes
their systemic roots, and provides structured mitigation approaches. It serves both as a
diagnostic tool for ongoing projects and as a proactive planning guide for new
observability initiatives.

6.8.1 Pitfall N21: Technology-First Thinking

Symptom: Stakeholders rush to deploy tools or protocols (e.g., SNMP polling or Redfish
APls) without clearly understanding business drivers, end-user needs, or compliance
obligations.

Underlying Cause: A bias toward solutionism, if technology alone will deliver value,
irrespective of context.

Impact: Misaligned data streams, unused dashboards, alert fatigue, and poor
stakeholder adoption.

Mitigation Strategy:

e Conduct structured Contextual Definition workshops before choosing tools.



e Translate platform goals into observable business decisions (e.g., “Are we
exceeding PUE targets?”), not just technical metrics.

e Involve compliance and operational stakeholders during the design phase, not
just after deployment.

Academic Insight: Technology without governance becomes entropy. In complex
systems theory, emergent value arises not from individual nodes (tools), but from their
structured interrelation, an idea as per the ideas of sociotechnical systems engineering.

6.8.2 Pitfall N22: Over-Engineering in Immature Environments

Symptom: Teams attempt to deploy fully integrated, real-time observability stacks in
legacy or telemetry-poor environments.

Underlying Cause: Aspirational design that ignores current-state limitations - e.g.,
SNMPv2-only devices, no CMDB integration, fragmented ownership.

Impact: Technical debt accrues rapidly. Stakeholders lose trust as platform outputs do
not reflect operational realities.

Mitigation Strategy:

e Use a maturity-based rollout model (see §6.3.1 Crawl-Walk—Run-Fly).

e Build from minimum viable telemetry (MVT) upward: start with basic PDU polling
and alert normalization.

e Formalize a site capability map to match ambitions with reality.

Academic Insight: System maturity must be scaffolded. Drawing from capability
maturity models (e.g., CMMI), premature optimization is not only wasteful, but also
structurally unsustainable.

6.8.3 Pitfall N23: Ignoring Semantic Normalization

Symptom: Metrics are collected in incompatible formats, units, or naming conventions
across vendors and sites.

Underlying Cause: Absence of data modeling, lack of shared vocabulary, and no
enforced transformation logic.

Impact: Visualization errors, alerting mismatches, broken compliance reports.
Mitigation Strategy:

e Establish a semantic schema for telemetry fields (e.g., voltage_phase_avg,
power_draw_kw).

e Normalize during ingestion (e.g., Telegraf > Logstash) using a transformation
dictionary.

e Leverage CMDB as a schema validation engine.



Real-World Example: One organization failed to detect a power imbalance due to
inconsistent OID mappings across firmware versions. Once normalization logic was
introduced, the alert logic stabilized, and false positives dropped by 85%.

6.8.4 Pitfall N24: Siloed Ownership and Governance Drift

Symptom: No one "owns" the observability platform for post-deployment. Thresholds
are outdated, dashboards unmaintained, and alerts misrouted.

Underlying Cause: Observability is viewed as a project, not a living system requiring
ongoing governance.

Impact: Degradation of value, alert noise, compliance gaps, executive disengagement.
Mitigation Strategy:

e Establish long-term governance anchors (see 86.7.3), such as:

e APlatform Product Owner (PPO)

e Domain-specific telemetry stewards

e Quarterly governance review cycles

e Use aversion-controlled observability repository (e.g., via Git) to track schema,
alert, and dashboard changes.

Academic Insight: From a systems governance perspective, unmaintained observability
is analogous to unpatched infrastructure: vulnerable to drift, decay, and organizational
amnesia.

6.8.5 Pitfall N95: Treating Observability as a Technical Island
Symptom: Observability is implemented in isolation, unintegrated with CMDB, ITSM
platforms, GRC systems, or ESG reporting workflows.

Underlying Cause: Lack of stakeholder alignment and architecture foresight.

Impact: Duplicated effort, fragmented insights, inability to prove compliance or trigger
operational actions.

Mitigation Strategy:

e Design for interoperability from the outset (see §6.5.4):

e Linkto ticketing platform for incident workflows

e Forward metrics to ELK data Lake for compliance visualization
e Integrate with GRC tools for audit readiness

Document use-case-based system interdependencies (e.g., "power drift > alert > SNOW
ticket > mitigation > CMDB update").

Academic Insight: The value of observability is not in seeing butin acting. From a
cybernetic perspective, observability without actuation is only half a system.



6.8.6 Pitfall N96: Underestimating Change Management and Training

Symptom: Platform is technically functional but remains underutilized. Stakeholders
bypass it using spreadsheets or custom scripts.

Underlying Cause: Poor onboarding, lack of clarity, or fear of change.
Impact: Shadow systems, fragmented data, platform abandonment.
Mitigation Strategy:

e Provide persona-based onboarding: different roles receive dashboards, alerts,
and training tailored to their decisions and processes.

e Launch continuous engagement programs: Office hours, internal champions,
quarterly design jams.

Real-World Observation: In a hybrid cloud operator, dashboard usage increased 4x
after introducing role-specific landing pages and targeted walkthroughs using internal
micro-learnings.

6.8.7 Pitfall Awareness as a Strategic Advantage

Avoiding failure is not simply about foresight - it is about institutional learning. The
observability platform must evolve from being seen as a static deployment toward a
resilient, governable, and socially adopted capability. The pitfalls outlined here are not
isolated mistakes, they are systemic patterns. By recognizing them early and embedding
countermeasures into design, implementation, and operational practice, organizations
enhance not only their observability readiness but their overall digital resilience.

Figure: Maturity vs Risk Heatmap
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6.9 Long-Term Sustainability & Continuous Improvement

Deploying a data center observability platform is the foundation of a sustainable
capability that must evolve alongside the organization’s infrastructure, regulatory
obligations, and strategic goals. This section explores how to design for long-term
relevance, avoid obsolescence, and institutionalize observability as a dynamic, value-
generating asset rather than a static technical deployment.

6.9.1 The Lifecycle of Observability Platforms

Sustainability in observability refers to the platform's capacity to remain accurate,
relevant, and actionable over time. Like infrastructure itself, observability systems
undergo phases:

¢ |Initialization: Configuration of the minimal viable telemetry and data ingestion
infrastructure.

e Operationalization: Integration with workflows, dashboards, alerting, and
compliance reporting.

e Optimization: Refinement of telemetry granularity, data tagging, and
automation.

e Evolution: Adaptation to new protocols, new equipment, and evolving
stakeholder needs.

To sustain these phases, organizations must shift from “deployment mindset” to
observability governance.

This includes:



e Policy-based configuration management (e.g., via GitOps),

e Governed change control over thresholds, alerting logic, and naming
conventions.

e Continuous validation of telemetry quality, coverage, and latency.

Example: A telemetry field used in annual ESG reports should be version-controlled,
auditable, and tested for semantic stability across firmware updates. Failure to do so
risks non-compliance.

6.9.2 Governance and Stewardship Models

Sustainability is not possible without clear organizational ownership and distributed
stewardship. Observability systems that lack governance often suffer from drift,
duplication, or decay. Successful models embed stewardship at three levels:

Governance Level Responsibility Example Practice

Sponsor budget and ESG board defines

Strategic business value alignment | reporting KPls

. Architecture Review Board
Enforce architectural

Tactical . approves ingestion
standards and evolution PP g
schemas

Maintain dashboards, NOC engineers refine alert

Operational alerts, CMDB mappings thresholds quarterly

A common pitfall is the “abandoned platform” syndrome - where telemetry is collected
but never acted upon because ownership of alerts or metrics has not been assigned.

Best Practice: Implement a Telemetry Ownership Matrix, mapping each signal or KPI to
a business function and escalation path.

6.9.3 Feedback Loops and Telemetry Refinement

A sustainable platform incorporates mechanisms for continuous improvement through
structured feedback. Observability is nhot a “set-and-forget” tool it must learn from
experience.

Effective feedback loops include:
Post-incident analysis: Were alerts timely and actionable?
Data quality audits: Are there silent failures in collection pipelines?

Stakeholder reviews: Are dashboards still aligned with stakeholder needs?



Capacity planning exercises: Is telemetry guiding infrastructure growth or
underutilization?

Practical Tip: Use quarterly “observability reviews” as part of operational governance
boards, like budget or performance reviews to recalibrate thresholds, dashboards, or
coverage areas.

6.9.4 Obsolescence and Futureproofing

Long-term sustainability requires systems to be desighed with graceful evolution in
mind.

Key strategies include:

Abstracted ingestion layers: Decouple data collection from analysis and storage to
support protocol evolution (e.g., shift from SNMP to Redfish).

Modular architecture: Ensure new telemetry sources or visualization layers can be
added without refactoring core logic.

Semantic versioning: Apply API-like discipline to metric formats, naming conventions,
and dashboard schema.

6.9.5 Metrics for Platform Sustainability

Just as observability enables organizations to monitor their environments, the
observability platform itself should be monitored and evaluated.

Suggested sustainability KPIs include:

Metric Description

Percentage of racks, PDUs, and sensors

Telemetry Coverage Ratio . .
actively reporting

Ratio of alerts resolved vs. ignored or auto

Alert Fatigue Index closed

Degree of alignment with required

Compliance Coverage Score regulatory metrics (EED, CSRD, etc.)

Average ingestion latency, packet drop

Data Pipeline Health rate, schema adherence

Frequency of access and updates by

Dashboard Utilization defined stakeholder groups

These metrics should themselves be visualized as part of a “platform health dashboard”
that is reviewed quarterly.
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This heatmap is visualizing the utilization frequency of various dashboard types by
different stakeholder groups. The values (from 1 to 5) indicate how often each group
engages with specific observability dashboards:

e Operations and Engineering show the highest usage of power monitoring tools.

e Sustainability and Compliance teams rely heavily on environmental monitoring
and compliance reports.

e Finance and Executives favor KPl dashboards and strategic insights.



Appendix A Use Cases

This appendix consolidates use cases and technical implementation requirements for

key areas of the observability infrastructure.

A.1 Configuration management for monitored devices
General guidelines:

Ensure appropriate version & change control processes are implemented (as
outlined in Section 4.7)
Store configuration in common CMDB system
o Keep CMDB entries up to date, ensuring it reflects appropriate physical
placement and connections
o Keep track of device level monitoring readiness e.g. in case of component
replacement or introducing new hardware to the system report if usual
monitoring configuration could not be applied (e.g. missing component/
device model mismatch)
Use standardized configuration templates for all managed device types
Ensure configuration drift control measures are in place

Configuration key items:

Device identification information

System name (e.g. network hostname) - well known device identifiers used in

CMDB system

Additional identification properties e.g. physical location information, ownership,

device type

o Applies also to the device modules / attached accessories e.g. environmental
sensors

Network connection settings including supported IP protocols / Addressing / DNS

server usage

Time & date configuration e.g. Network Time Protocol configuration

Appropriate operating system patches or firmware version control

Security

Allowed access protocols (for both configuration and monitoring), depending on

selected methods, e.g.

o Minimum security specification for HTTPS access methods for REST APls /
Redfish endpoints

o Appropriate SNMP protocol settings like versions, communities, encryption
methods

Authentication

o Localuser accounts configuration / integration with centralized systems



o MFA configuration

Authorization

o Role based access control configuration — separating “administrator” and
“monitoring” role

Auditing

o Appling minimum security specification e.g. integration with SIEM tools
whenever possible

Additional security hardening best practices

o Ensuring not used services/features/access methods are disabled e.g. TFTP
or Telnet servers

Monitoring

Configure appropriate access methods to monitoring/telemetry data

Configure desired monitoring features are enabled in device settings e.g.
environmental sensors data collection or outlet level data collection is turned on
Configure appropriate alerting thresholds

Configure alerting severity

Ensure monitoring agent/collector settings are in sync with monitored device side
configuration e.g. appropriate addresses of SNMP Trap receivers / Redfish event
subscription addresses are used in device-level configuration

A.2 Power & environmental metrics visualization

General guidelines:

Whenever possible use version-controlled visualization engine and follow
standard change control procedures
When creating breakdowns or filters use appropriate set of tags to ensure right
metric representation, keeping in mind relationships between objects (e.g.,
breaker metrics for single PDU in given rack would be identified at least by tags:
host, hw.parent and hw.name/hw.id)

o This applies also for visualization of event data like error logs or SNMP trap

data

Apply appropriate color-coding to indicate primary / secondary (backup) power
source (as indicated by appropriate resource tagging and/or taken from device
naming convention)
When visualizing multiple metrics on single dashboard ensure color coding is
consistent for common set of tags
Indicated threshold/classes/boundaries on graphs should use well-known
values, desirably taken from monitoring (e.g., device power limits) or CMDB
system (location specific limits, forecasted values)



Observability infrastructure dashboard

Provides an overview of monitoring infrastructure, providing information with
agent/collectors statuses, number of collected metrics, and error rates.

- Monitoring infrastructure errors view e.g., containing sync issues with CMDB
system, unhealthy instances

- Metric collection errors time chart, grouped by monitoring agent/collector
instance

- Collection error rate per monitored device

- If applicable — metrics analysis/persistence layer errors per instance of
agent/collector

Rack dashboard

Provides detailed view of a rack, providing information useful for day-to-day operations,
including the most detailed data from PDU units including phase power, outlets, and
breakers.

- Current device state, “at-glance” overview for active alerts, power devices &
their component statuses

- PDU (true) power (kilowatts) & apparent power in time chart view if possible
visual comparison with device rating limits and forecasted values.

- PDU hourly energy consumption in time chart view if possible visual
comparisons with forecasted values.

- Power Phase power (kilowatts) & apparent power (kilovolt-ampere) in time
chartview
PDU Breakers data breakdown (table) - side-by-side comparison with primary
& secondary (backup) feed including peak current, current rating

- PDU Outlets data breakdown (table) - side-by-side comparison with primary
& secondary (backup) feed including: braker relationship, peak true &
apparent power, peak current, outlet current rating

- Environmental sensor data:
Temperature & humidity time charts, breakdown over sensor location, with
ASHRAE recommendations indication (e.g. appropriate area coloring).

Datacenter room dashboard

Provide detailed view for datacenter rooms, to provide summarized PDU & rack data for
given physical location (usually sharing cooling and power sources).

- Power data summary for PDUs as time chart — visual comparison with
forecasted values

- Peak environmental sensor values, breakdown over rack & sensor location -
with room averages (“at-glance” overview for peak values for selected period)



Datacenter room heatmaps

Provide environmental sensor data visualization with related infrastructure (e.g., racks,
cages. hot/cold containment zones) including spatial information in 2D/3D view
(depending on availability of the data and integration with CMDB systems).
Gradient colors should reflect local SLA classes, e.g., using ASHRAE data center
thermal guidelines, starting with yellow when exceeding “recommended thresholds,
turning red when approaching “allowable” boundaries.

- Temperature gradient breakdowns depending on sensor location (front/rear

and/or bottom/middle/top)
- Humidity gradient breakdowns depending on sensor location (front/rear
and/or bottom/middle/top)



Appendix B: Software Bill of Materials (SBOM)

This appendix provides a comprehensive Software Bill of Materials (SBOM) for the open-
source components utilized within the Data Center Observability Platform (including
Aperio components), as defined by the blueprint. It ensures transparency, traceability,
and compliance with the sustainability and interoperability objectives outlined in this
blueprint.

Only open-source or open-standard components have been included to support
principles of modularity, openness, and composability, while minimizing vendor lock-in.

B.1 Methodology

e Implementing Apeiro Reference Architecture

e Utilizing components provided by Aperio management plane (Greenhouse)
e Identification of all foundational and integration platform elements.

e Validation of open-source licensing for each component.

e Mapping functional roles to logical architectural layers.

e Alignment with regulatory, operational, and sustainability drivers.

B.2 Component Overview

Function within Open-Source
Component . . Notes
Architecture License
Orchestration of Gardener extends to
Kubernetes - containerized Apache native Kubernetes.
Gardener observability License 2.0 Apeiro cloud-edge layer
services component
Orchestration of Orchestration of
observability distributed Kubernetes
. Apache .
Greenhouse componentsin ) infrastructure.
o License 2.0 .
distributed Apeiro management
environment plane component
Vendor-agnostic
tel t
Aggregation and .e emetry .
instrumentation.
OpenTelemetry export of telemetry | Apache . .
. . Main Apeiro
Collector data (metrics, logs, | License 2.0 -
Observability
traces)
component (managed by
Greenhouse)
Telegraf SNMP Polllng agent MIT License Supports direct ingestion
for environmental from PDUs and sensors.




and power
telemetry
CMDB and device Apache Key for asset-to-
NetBox metadata . .
License 2.0 telemetry mapping.
management
Perses Visualization / Apache I\’Il:g;cr;vi?:::azgr;
dashboarding License 2.0 P g y
Greenhouse)
Thanos extending
Prometheus functionality
Prometheus & Metrics collection, | Apache with long term metrics
Thanos storage and alerting | License 2.0 storage
(managed by
Greenhouse)
Event storage, data
Storage, search, visualization and
. Apache .
OpenSearch analysis and ) analysis
. - License 2.0
visualization (managed by
Greenhouse)
SNMP Libraries Communication BSD/MIT Enables polling and trap
(e.g., PySNMP, with PDUs, EMUs, Licenses handling for device
GoSNMP) sensors telemetry.
. . APl access for
I(?Oecg:)s:a?Pl Clients environmentaland | DMTF Open Optional based on
. b . power telemetry Specification | hardware support.
integration)
from hardware

B.3 License Summary

License Type

Components Governed

Compliance
Considerations

Apache License 2.0

Gardener, Greenhouse,
Kubernetes,
OpenTelemetry, Netbox,
Perses, Prometheus,
OpenSearch, Thanos

Permissive; modification,
distribution allowed with
attribution.

MIT License

Telegraf, SNMP libraries

Very permissive; minimal
obligations.




0SS versions must be used

Elastic License (OSS Elasticsearch OSS, to avoid commercial

Version) Kibana OSS . . _
licensing restrictions.
Strong copyleft license;

AGPLv3 Grafana acceptable under open-

source goals.

OpenAPI / REST Standard

ServiceNow connectors | Standard-based; open

(custom) implementations available.
DMTF Standard Redfish API No proprietary restrictions.
B.4 Architectural Mapping

Logical Architecture Layer

Associated Components

Orchestration and Deployment

Gardener, Kubernetes, Greenhouse

Telemetry and Ingestion

Telegraf, OpenTelemetry Collector, SNMP
Libraries

Storage

Prometheus, Thanos, OpenSearch

Visualization

Perses, OpenSearch

Asset Management and CMDB

NetBox

Alerting and Incident Detection

Prometheus - AlertManager

Ticketing Integration

REST API (open-source connectors)

Optional Hardware API Layer

Redfish API Clients

B.5 Sustainability and Interoperability Alignment

Consistent with sustainability objectives (Chapter 6.7):

e Open governance and extensibility across all components.

e Avoidance of vendor-locked ecosystems.

e Lightweight, scalable telemetry pipelines reduce operational overhead.

e Compatibility with energy efficiency and regulatory reporting frameworks.




B.6 Versioning and Change Management

e Platform components are maintained via Greenhouse plugin structure

e Upgrades must preserve open-source compliance and be tested against
regression suites.

e Change requests related to core components must follow governance processes
(outlined in Section 4.7)



Appendix C - References and Source Materials

This appendix enumerates the principal references, standards, regulatory frameworks,

and project documentation sources that informed the extension of Aperio Reference

Architecture in the form of Data Center Observability Platform Reference Architecture. It

serves to acknowledge foundational materials and provide transparency regarding the

basis for design decisions, regulatory mappings, and operational models discussed

throughout the blueprint.

C.1 Regulatory and Policy References

Title Source / Publisher

Relevance

Directive (EU)
2023/1791 (Energy European Union
Efficiency Directive)

Legal driver for mandatory
energy and efficiency reporting
by data centers exceeding
500kW installed IT power.

Delegated Regulation
(EU) 2024/1364 European Union
(Annex | KPIs)

Specifies detailed reporting
requirements for sustainability
KPIs in data center operations.

Regulation (EU)
2019/424 (Ecodesign
Regulation for servers
and storage)

European Union

Establishes minimum efficiency
standards for data center
equipment procurement and
operation.

Climate Neutral Data

Centre Pact Industry Self-Regulation

Voluntary commitments
towards achieving carbon
neutrality and sustainability
targets by 2030.

EU Code of Conduct
for Data Centre Energy | European Commission
Efficiency

Best practices framework for
energy-efficient data center
design and operation.

C.2 Open Standards and Technology Specifications

Title Source / Publisher Relevance
Apeiro Reference SAP SE / NeoNephos Blueprint for Cloud-Edge
Architecture Foundation Continuum

Gardener Project

. NeoNephos Foundation
Documentation

Management and orchestration
of Kubernetes clusters at scale.




Greenhouse Project
Documentation

NeoNephos Foundation

Cloud operation platform for
distributed Kubernetes
infrastructure.

Kubernetes
Documentation

Cloud Native Computing
Foundation (CNCF)

Foundation for container
orchestration within the
observability platform.

OpenTelemetry
Specification

OpenTelemetry Project
(CNCF)

Telemetry collection framework
for metrics, logs, and traces.

NetBox
Documentation

NetBox Community

CMDB and infrastructure
metadata management.

Prometheus
documentation

Cloud Native Computing
Foundation (CNCF)

Metrics collection and storage,
alerting

OpenSearch
documentation

Linux foundation

Data search, analysis and
visualization

Thanos
documentation

Cloud Native Computing
Foundation (CNCF)

Prometheus long term metrics
storage

Perses documentation

Cloud Native Computing
Foundation (CNCF)

Visualization dashboards

Telegraf
Documentation

InfluxData

SNMP telemetry ingestion agent
for environmental and power
monitoring.

SNMP Protocol
Specifications (RFC
1157, RFC 3411)

IETF (Internet Engineering
Task Force)

Protocols enabling telemetry
polling and traps from PDUs
and environmental sensors.

Redfish APl Standard

DMTF (Distributed
Management Task Force)

Open standard for secure and
scalable hardware telemetry
acquisition.

Open Compute
Project (OCP)
Documentation

Open Compute Project
Foundation

Sustainability, modularity, and
transparency principles for
hardware and infrastructure
design.

C.3 Methodological References and Community Practices

Title

Source / Publisher

Relevance




Cloud reference
architecture

Neo Nephos Foundation

General guidelines for building
cloud infrastructure

Best Practices for
Observability
Architectures

CNCF Observability
Working Group

Conceptual alignment for
defining observability layers,
telemetry processing, and
stakeholder needs.

Infrastructure as Code
and CI/CD Practices

GitHub Actions
Documentation

Automation framework for
infrastructure deployment,
onboarding, and configuration
drift monitoring.

OpenTelemetry API
Reference

OpenTelemetry Project

Provides detailed API
documentation for
implementing observability in
applications.

Gardener Architecture
Documentation

Gardener Project

Offers insight into the
architecture and operation of
Gardener for Kubernetes cluster
management.

NetBox Labs

Detailed documentation on

. NetBox Labs NetBox features, deployment,
Documentation . . e
and integration capabilities.
. . Instructions for configuring
Telggraf Configuration InfluxData Telegraf for various data
Guide . :
collection scenarios.
Redfish Specification | Eae:é'lf;lhri:ﬁ: f::qztnatnuds?rrnd o
DSP0266 g g

RESTful APIs.

Open Compute
Project Specifications

Open Compute Project
Foundation

Provides hardware
specifications and guidelines
promoting open and efficient
data center designs.

Data Center
Standards and Guides

ASHRAE

Set of guidelines related to
thermal conditions withing data
centers




