

Data Center Observability Blueprint

Document Control

Version Date Changes Made
1.0 20.04.2025 Initial version

Addition of graphical additions, reference architecture and
example architectural design

1.1 19.12.2025 Removal of tool specific mentions (ELK, Telegraf, Netbox).
Replacing alerting examples in Appendix A with Change
management & Visualization requirements.

1.1.1 07.01.2026 Update references to ApeiroRA components in Appendix B &
C, include AperioRA refernces in abstract

Table of Contents
ABSTRACT.. 7

1. Introduction .. 7

1.1 Challenges .. 8

1.2 The Need for Observability .. 8

1.3 Purpose of Blueprint ... 9

1.3.1 Primary Objectives .. 9

1.3.2 How to Read This Document .. 10

1.3.3 Recommended Reading Paths by Audience .. 10

1.3.4 Reading Recommendations ... 11

1.3.5 Document Use in Practice ... 11

1.4 Regulatory Considerations (Regulatory-Driven Framing) 12

1.4.1Market and Operational Challenges in the Data Center Sector 12

1.4.2 Regulatory Requirements (as per Apr.2025) ... 13

1.4.3 Formalized Requirements Inferred (excerpt) .. 14

1.4.4 Advanced EU Sustainability and Taxonomy Compliance Mapping 15

2 Understanding Datacenter Monitoring and Observability 18

2.4 Overview ... 18

2.4.1 Hardware Layer .. 18

2.4.2 Observability Software Layer ... 19

2.4.3 API and Telemetry Layer .. 19

2.4.4 Visualization and Insights Layer ... 19

2.5 Core Principles of Datacenter Monitoring and Observability 20

2.5.1 Benefits of Observability ... 21

2.5.2 Observability vs. Monitoring .. 21

2.5.3 Benefits of Integrating CMDB and Desired State Reporting 21

2.5.4 Monitoring, Observability and Desired State Reporting Example 22

3 Stakeholders and Organizational Impact ... 22

3.1 Why Stakeholders Matter .. 23

3.2 Stakeholder Impact & Review Matrix .. 23

3.3 Primary Stakeholder Groups ... 25

3.6.1 Data Center Operations & Engineering .. 25

3.6.2 Capacity Planning & Infrastructure Architecture .. 25

3.6.3 Operations & Incident Management Teams ... 26

3.6.4 Finance, Procurement & Vendor Management ... 26

3.6.5 Sustainability & Compliance Officers.. 26

3.6.6 Executive Leadership & Business Strategy ... 27

3.6.7 Impact on Core Processes ... 27

3.6.8 Linking Observability to Broader Goals .. 28

3.6.9 Examples of use cases that can be achieved with the proposed solution: 28

4 Framework Design ... 32

4.1 Logical Architecture ... 32

4.2. Metrics Monitored .. 33

4.3 Data Quality & Normalization Principles .. 34

4.3.1 Unified Data Model .. 35

4.3.2 Naming & Tagging Conventions .. 35

4.3.3 Timestamp Synchronization ... 36

4.3.4 Metric Normalization & Unit Handling ... 36

4.3.5 Data Integrity & Validation .. 36

4.3.6 Deviation Correction Model for Quantized Power Telemetry in PDUs 37

4.3.7 Device Identity Mapping & Source Trust .. 41

4.3.8 Data Enrichment Policies ... 41

4.3.9 Monitoring Data Health .. 42

4.4 Security Considerations ... 42

4.4.1 Zero Trust Architecture .. 42

4.4.2 Authentication & Authorization .. 43

4.4.3 Secure Telemetry Ingestion .. 43

4.4.4 Data Integrity and Tamper Detection ... 44

4.4.5 Role-Based Access Controls (RBAC) & Segregation of Duties 44

4.4.6 Secrets & Credential Management ... 44

4.4.7 Secure CI/CD Pipelines ... 44

4.4.8 Monitoring Platform Security .. 45

4.4.9 Compliance & Audit Readiness .. 45

4.4.10 Network and API Security ... 45

4.5 Data Lifecycle Management and Compliance Considerations 46

4.5.1 Retention and Archiving Strategy .. 46

4.5.2 Data Classification and Tagging .. 46

4.5.3 GDPR and Regulatory Compliance Considerations in respect to data 47

4.5.4 Data Integrity During Retention .. 47

4.6 Enterprise Integration Expectations ... 48

4.6.1 Integration Overview.. 48

4.6.2 CMDB - Source of Truth Alignment .. 49

4.7 Governance and Change Control (non-technical) ... 50

4.7.1 Governance Scope .. 50

4.7.2 RACI Matrix: Platform Ownership (example) .. 50

4.7.3 Example Change Management Policy ... 51

4.7.4 Operational Ownership by Platform Zone .. 51

4.7.5 Configuration Drift & Change Automatic Detection Example 51

5 Understanding Composable Infrastructure ... 52

5.4 Overview ... 52

5.4.1 Hardware Layer ... 52

5.4.2 Composable Software Layer .. 52

5.4.3 API, SNMP Layer ... 53

5.5 Application or End-User Usage Layer ... 53

5.6 Core Principles .. 53

6. Implementation Strategy & Practical Considerations for Real-World Adoption 55

6.1 Organizational Readiness – Contextual definition... 55

6.2 Implementation Planning Framework .. 57

6.2.1 Phase 1 Contextual Definition .. 58

6.2.2 Phase 2: Capability Assessment ... 58

6.2.3 Phase 3: Platform Architecture ... 59

6.2.4 Phase 4: Operational Integration .. 59

6.3 Implementation Scenarios ... 60

6.4 Observability Success Drivers .. 62

6.4.1 Telemetry-CMDB Convergence .. 63

6.4.2 Granularity by Purpose .. 63

6.4.3 Lifecycle Governance .. 63

6.4.4 Ease of Use ... 64

6.4.5 Trust and Data Health Monitoring ... 64

6.5 Interoperability and Compatibility Considerations ... 64

6.5.1 Protocol Interoperability .. 65

6.5.2 Semantic Compatibility & Data Normalization ... 65

6.5.3 CMDB Integration for Source Consistency ... 66

6.5.4 Interoperability with Enterprise Systems ... 67

6.5.5 Legacy and Vendor-Locked Devices .. 67

6.6 Practical Adoption Tips by Stakeholder Type .. 68

6.6.1 Data Center Operations Teams... 68

6.6.2 Platform and Infrastructure Architects: Designing for Modularity and
Scalability ... 69

6.6.3 Compliance and Sustainability Officers: Verifiability, Traceability, and Audit-
Readiness ... 69

6.6.4 Procurement and Asset Management: Lifecycle Intelligence and Capacity
Planning ... 70

6.6.5 Executive Leadership: Strategic Alignment and ESG Impact 70

6.7 Lifecycle Sustainability and Long-Term Maintainability 71

6.7.1 Understanding Sustainability in Observability Context 71

6.7.2 Key Categories of Sustainability Risk ... 71

6.7.3 A Sustainability Framework for Observability ... 72

6.7.4 Example: Sustainability Breakdown in a Multi-Site Data Center 73

6.7.5 Strategic Recommendations .. 73

6.8 Common Pitfalls and How to Avoid Them .. 74

6.8.1 Pitfall №1: Technology-First Thinking .. 74

6.8.2 Pitfall №2: Over-Engineering in Immature Environments 75

6.8.3 Pitfall №3: Ignoring Semantic Normalization ... 75

6.8.4 Pitfall №4: Siloed Ownership and Governance Drift 76

6.8.5 Pitfall №5: Treating Observability as a Technical Island 76

6.8.6 Pitfall №6: Underestimating Change Management and Training 77

6.8.7 Pitfall Awareness as a Strategic Advantage .. 77

6.9 Long-Term Sustainability & Continuous Improvement 78

6.9.1 The Lifecycle of Observability Platforms .. 78

6.9.2 Governance and Stewardship Models ... 79

6.9.3 Feedback Loops and Telemetry Refinement .. 79

6.9.4 Obsolescence and Futureproofing .. 80

6.9.5 Metrics for Platform Sustainability .. 80

Appendix A Use Cases ... 82

A.1 Configuration management for monitored devicesGeneral guidelines: 82

Configuration key items: .. 82

A.2 Power & environmental metrics visualization ... 83

General guidelines: .. 83

Observability infrastructure dashboard ... 84

Rack dashboard .. 84

Datacenter room dashboard .. 84

Datacenter room heatmaps ... 85

Appendix B: Software Bill of Materials (SBOM) .. 86

B.1 Methodology ... 86

B.2 Component Overview .. 86

B.3 License Summary .. 87

B.4 Architectural Mapping ... 88

B.5 Sustainability and Interoperability Alignment ... 88

B.6 Versioning and Change Management .. 89

Appendix C - References and Source Materials ... 90

C.1 Regulatory and Policy References .. 90

C.2 Open Standards and Technology Specifications .. 90

C.3 Methodological References and Community Practices 91

ABSTRACT
This document outlines a blueprint for an open-source data center monitoring and
observability platform, based on Apeiro Reference Architecture.
Designed to address the evolving operational challenges faced by modern data center
operators. Recognizing the increasing demands for efficiency, real-time insight, and
scalable infrastructure management, the proposed solution targets the granular
monitoring of individual racks through Telemetry devices, including Embedded
Monitoring Units, intelligent Power Distribution Units, and environmental sensors.

It emphasizes real-time data collection and analysis, SNMP-based monitoring at the
socket level, and comprehensive environmental oversight. Integration with industry-
standard tools such as OpenTelemetry, CMDB, data lakes, and ticketing systems
ensures streamlined incident response, enhanced interoperability, and sustainability.

By overcoming common limitations like scalability constraints and vendor lock-in, this
approach delivers improved reliability, performance, and operational visibility for data
centers of varying scale and complexity.

1. Introduction
Modern data centers must prioritize operational efficiency, real-time monitoring, and
scalability to manage increasing complexity. Key components like Embedded Monitoring
Units, intelligent PDUs, and environmental sensors are vital for reliable power
distribution and maintaining optimal conditions. However, current DCIM solutions often
face issues such as limited scalability, vendor lock-in, and compatibility challenges,
which can hinder proactive infrastructure management.

This blueprint presents an open-source monitoring platform designed for data center
operators, focused on individual racks with telemetry devices (management points,
PDUs, sensors).

Key features include:

• Real-time operational data collection and analysis
• SNMP-based monitoring of EMUs and PDUs at the socket level
• Environmental tracking for temperature and humidity
• Integration with CMDB, data sinks and ticketing systems

The following sections will address core operational monitoring and control challenges
in modern data centers.

1.1 Challenges
Modern data centers are rapidly evolving due to technological, regulatory, sustainability,
and accountability pressures. They now operate as transparent, compliant ecosystems
serving various stakeholders beyond IT. As a result, advanced observability platforms
are needed to meet both technical and strategic organizational goals.

Key challenges in the data center environment include:

• Customization Requirements: Standardized solutions may not address the
distinct needs of various organizations. Customization is often implemented to
ensure infrastructure aligns with business objectives.

• Integration: Managing and integrating multiple components can introduce
complexity and require specialized expertise.

• Legacy Systems: Integrating legacy systems with modern infrastructure may
cause compatibility or performance issues.

• Resource Allocation: Efficiently allocate resources to meet workload needs and
reduce contention.

• Deployment Complexity: Manage operations across varied, multi-site data
centers.

• Cost-Effectiveness: Utilizing an open-source and cost-efficient platform over
proprietary alternatives.

Monitoring embedded units, PDUs, and environmental sensors presents additional
challenges, such as:

• Scalability: Monitor all Embedded Monitoring Units and PDUs across distributed
sites.

• Interoperability: Integrate with existing CMDB and incident management tools
without depending on specific vendors.

• Accurate Insights: Deliver timely data to reduce downtime and optimize
performance.

• Environmental Metrics: Measure factors like temperature and humidity.

These factors indicate the necessity for revised approaches. The subsequent section
introduces the intent and strategic direction of this blueprint.

1.2 The Need for Observability
Traditionally, data center monitoring has been treated as a technical function, an
operational necessity for detecting faults, measuring resource usage, and maintaining
uptime. However, the expectations placed on modern data center operations have
evolved significantly.

Organizations now face demands such as:

• Timely performance visibility across globally distributed, heterogeneous
environments (including co-location and edge sites).

• Cross-functional integration between facility, infrastructure operations teams,
application operations teams, capacity planning, procurement, finance, and
sustainability teams.

• Compliance with stringent regulatory frameworks requiring not only energy
efficiency but also auditability, transparency, and continuous reporting.

• Adaptability to rapid deployment cycles and automation pipelines enabled by
Infrastructure as Code (IaC), containerization, and cloud-native paradigms.

Observability, defined as the ability to infer the internal state of a system from its
telemetry (logs, metrics, traces) is no longer a tooling upgrade. It has become a
foundational capability for enterprise resilience, regulatory compliance, cost
optimization, and environmental responsibility.

1.3 Purpose of Blueprint
The goal of this blueprint is to deliver a targeted, composable, scalable, and modular
monitoring platform to:

- Provide visibility into Embedded Monitoring Units and their connected devices.
- Provide timely insights into power consumption, environmental conditions,

balance, function and device health.
- Simplify the management and reporting of operational data using open-source

tools and technologies.
- Automate deployment and management using
- Centralize data processing with data lake for enhanced analytics.
- Provide integration with various systems (i.e. Ticketing).

By implementing this solution, organizations will be able to:

- Reduce operational risks through proactive monitoring and alerts.
- Streamline incident management workflows via integration with Ticketing

platforms.
- Lay the foundation for future observability enhancements, expanding beyond

Embedded Monitoring Units and PDUs...

Before diving into the technical framework, it is critical to understand who this solution
serves and how it influences organizational roles and responsibilities.

1.3.1 Primary Objectives

This blueprint aims to achieve the following objectives:

• Establish a unified architectural framework for integrating telemetry across
power, environmental, and asset management domains within data center
environments, utilizing Aperio Reference Architecture components

• Translate legal and regulatory obligations (e.g., Directive 2023/1791, Delegated
Regulation 2024/1364) into technical design requirements and system
capabilities.

• Define a reference observability pipeline, including data ingestion, normalization,
enrichment, visualization, and alerting using open-source tools.

• Support dynamic, real-time observability of data center components such as
PDUs, sockets, phase loads, environmental sensors, and embedded monitoring
units.

• Enable integration with CMDB and Incident Management / Ticketing platforms to
ensure traceability, auditability, and automation of responses to anomalies or
regulatory triggers.

• Provide implementation guidance for scalable deployment across distributed
data center infrastructure, with applicability to co-location facilities and edge
environments.

1.3.2 How to Read This Document

This document is structured as both a strategic reference architecture and a technical
implementation guide. It is intended to support a wide range of stakeholders with
varying levels of technical expertise, functional responsibility, and regulatory
involvement. As such, the document has been designed to be modular, navigable, and
role-aware, allowing readers to engage with the content based on their individual
perspective and operational focus.

To maximize clarity and usability, this section offers guidance on how to navigate and
extract value from the blueprint according to stakeholder function. Readers are
encouraged to approach the document non-linearly, focusing on the chapters that are
most relevant to their responsibilities while consulting foundational sections as needed
for context.

1.3.3 Recommended Reading Paths by Audience

Audience Recommended
Sections Purpose

Infrastructure &
Platform Engineers

Chapters 2, 4, 6
Appendices

Understand architecture, telemetry
sources, and deployment models

Sustainability &
Compliance Officers

Chapters 1.1, 3.6.5,
4.5, 6.4

Map observability platform to EU
directives, ESG KPIs, and reporting
needs

Data Center
Operations &
Capacity Planners

Chapters 2, 3, 4.2–
4.3, 6.2, 6.3

Enable proactive planning, incident
prevention, and
power/environmental visibility

Service Management
& Incident Teams

Chapters 3.6.3, 4.6,
6.3–6.4

Understand alert correlation, CMDB
linkages, and incident resolution
workflows

Executive & Strategic
Leadership

Chapters 1.1–1.2,
3.6.6–3.6.8

Evaluate business value, risk
reduction, and alignment with
transformation strategy

External Partners &
Regulatory Bodies

Chapters 1.3–1.4,
4.6, 6.5

Assess regulatory alignment, system
openness, and cross-entity
interoperability

1.3.4 Reading Recommendations

• Readers unfamiliar with observability concepts or data center operations are
advised to start with Chapter 2, which introduces key principles, layers of
observability, and distinctions from traditional monitoring practices.

• Those evaluating the blueprint for alignment with EU regulations or internal ESG
frameworks should consult Chapter 1.3 for legal mappings and Chapter 4.5 for
data retention and audit considerations.

• Readers involved in actual design and deployment of observability platforms
should focus on Chapter 4 (architecture) and Chapter 6 (implementation
strategy), which provide a technically actionable pathway for rollout.

• Use cases, alert thresholds, and real-world implementation logic can be found in
the Appendices, which serve as reference material for practitioners.

1.3.5 Document Use in Practice

This document may be used in multiple contexts:

• As an architectural guide for internal observability platforms across data
centers and co-location facilities.

• As a compliance readiness framework, showing how data flows, reporting
outputs, and controls align with regulatory requirements.

• As a stakeholder alignment guide during cross-functional workshops,
procurement evaluations, or design reviews.

• As a knowledge base for onboarding technical teams or partners contributing to
observability deployment and lifecycle management.

Readers are encouraged to annotate, extend, or adapt this blueprint to suit their local
environment, technology stack, or regulatory jurisdiction. All design principles outlined
herein are intended to be composable, reusable, and modular.

1.4 Regulatory Considerations (Regulatory-Driven Framing)
This section outlines how European and national regulations affect current data center
operations. The resulting legal requirements and sustainability objectives serve as
design considerations for the monitoring and observability platform described in this
blueprint.

Infrastructure teams typically consider uptime, cooling, and space as primary factors.
Recently, energy consumption, carbon emissions, and public accountability have also
been identified as key considerations.

• Data centers use ~3–4% of total electricity in Europe.
• The European Union now requires reporting of energy efficiency and

environmental impact for data centers of certain sizes.
• Failure to comply may lead to legal risk, fines, or blocked expansion in

countries like Germany and the Netherlands.
• Clients and investors— sustainability is now a competitive advantage.

Observability now serves as both a compliance tool and a business enabler.

A simplified workflow:

1. EU Regulation (e.g., PUE reporting)
2. Requires data (IT power vs. total power)
3. Data collected via SNMP or Redfish from PDUs
4. Data processed to align with OpenTelemetry model
5. Stored in a data lake
6. Visualized through dashboards
7. Reports generated for EU, audits, and executives

This system streamlines compliance, enhances visibility, and delivers operational
insights—all framed by primary regulatory texts and mandates.

1.4.1Market and Operational Challenges in the Data Center Sector

Across Europe, data center operators from cloud providers to enterprise infrastructure
teams face converging pressures including:

Category Challenge Description

Operational
Complexity

Growing footprints of global data centers, co-location cages,
and edge sites leads to inconsistent monitoring and blind
spots.

Legacy vs.
Modernization

Many DCs operate mixed environments with legacy
infrastructure that lacks telemetry support.

Energy Reporting
Gaps

Operators often cannot measure or report energy
consumption at sufficient granularity for audit or
compliance.

Cooling & PUE
Monitoring

Temperature and humidity data is inconsistently tracked,
and PUE calculation often lacks real-time accuracy.

Siloed System
Ownership

IT, facilities, finance, and compliance teams use separate
tooling, hindering coordinated monitoring efforts.

Sustainability Proof
Gaps

Reporting frameworks (ESG, EU CSRD) require traceable
power and carbon data - current tooling often lacks in this
area.

These are no longer just best-practice shortcomings - many are now subject to legal and
regulatory enforcement, particularly under the revised Energy Efficiency Directive (EU
2023/1791) and its delegated implementation regulation (EU 2024/1364).

1.4.2 Regulatory Requirements (as per Apr.2025)

Below is a mapping of specific, enforceable obligations to architectural or design
responses.

Regulation Legal Requirement Blueprint Response /
Mapping

Directive (EU)
2023/1791 (EED –
Article 12)

Data centers with installed IT
power ≥ 500 kW must report
energy efficiency indicators by
Sept 15, 2024.

Telemetry from PDUs +
Assent Metadata → data
Lake → exportable KPIs

Delegated Regulation
(EU) 2024/1364
(Annex I)

Operators must report: PUE,
temperatures, waste heat reuse,
renewable share, energy reuse
factor, water usage.

Floor- and socket-level
monitoring, ambient
temp/humidity, data lake
enrichment

Regulation (EU)
2019/424 – Ecodesign

Applies minimum efficiency
standards for servers/storage.
Compliance needed to
procure/operate such devices.

CMDB-based mapping
of equipment type and
model + firmware
version tracking

Climate Neutral Data
Centre Pact (self-
regulation)

Commit to 100% renewable use
by 2030, energy reuse, clean
water use.

Renewable source
tagging per site, alerting
if usage exceeds brown
energy thresholds

Sources:

• DIRECTIVE (EU) 2023/1791
• DELEGATED REGULATION (EU) 2024/1364
• ECODESIGN REGULATION (EU) 2019/424
• GERMANY EEG 2023

(subject to update as per legal proceedings – no claim for long term accuracy)

1.4.3 Formalized Requirements Inferred (excerpt)

Each KPI or mandate in the regulatory documents logically implies an infrastructure or
observability feature. Below are examples of traceable causality:

Legal Mandate (Verbatim) Inferred Platform Requirement

“Operators shall report their Power
Usage Effectiveness (PUE)”
(Reg. 2024/1364, Annex I)

Measurement of IT energy vs. total facility
energy → Derived from rack PDU data vs.
site-wide metering

“...temperature set point in IT spaces and
external air temperature”

In-rack and whitespace temperature
monitoring, normalized and reported at
time-synced intervals

“Share of electricity from renewable
sources”

Tagging of sites by energy sourcing
metadata, with integration from
procurement or power provider contracts

“Data center waste heat utilization
potential”

Telemetry on inlet/outlet air differential
temperatures, airflow patterns, or BTU
calculations

“Annual water usage for cooling”
Integration with environmental and facility
sensors where cooling towers or liquid-
based systems are used

“Reporting KPIs to the central EU
database annually (Article 12, EED)”

Reporting/export API from Data Lake or
intermediate dashboard layer, structured
as per delegated regulation schemas

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023L1791
https://eur-lex.europa.eu/eli/reg_del/2024/1364/oj
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R0424
https://www.bundesregierung.de/breg-en/search/amendment-of-the-renewables-act-2060448

1.4.4 Advanced EU Sustainability and Taxonomy Compliance Mapping

As data centers become both critical infrastructure and regulated environmental actors,
the European Union has introduced overlapping legal frameworks and voluntary pledges
that redefine observability from a purely operational tool into a sustainability-enabling
control system.

This section provides a glimpse of how advanced EU legislation - beyond baseline
energy efficiency directives, shapes architectural decisions, metadata design, and audit
workflows within the observability platform.

Where Section 1.4.2 presented formal reporting requirements, and Section 1.4.3
mapped legal text to inferred observability needs, this section translates strategic
sustainability mandates, including the Corporate Sustainability Reporting Directive
(CSRD), the EU Taxonomy Regulation, and the Climate Neutral Data Centre Pact
(CNDCP) into design implications. It also addresses forward-looking obligations such as
energy reuse, water efficiency, and Scope 3 readiness.

The Corporate Sustainability Reporting Directive (Directive (EU) 2022/2464)

CSRD introduces a dual-reporting obligation known as double materiality:

• Financial materiality: How environmental risks (e.g., energy costs, outage-prone
infrastructure) affect the organization’s performance.

• Impact materiality: How the organization’s operations affect climate, resources,
and society (e.g., carbon emissions, water draw, waste heat).

To support CSRD-aligned reporting, observability platforms must enable quantifiable,
traceable, and timestamped metrics that reflect both categories.

These include:

CSRD Topic Observability Feature

Scope 2 emissions Site-level renewable energy tagging in CMDB and PDU
telemetry

Energy intensity Rack-to-room telemetry normalized by IT workload density

Physical climate risks Overheat event detection, thermal capacity tracking

Material use and
lifecycle Telemetry-enriched health data for PDUs and sensors

Design Implication: Support ESRS-aligned exportable metrics (e.g., kWh/rack/month,
% renewable energy, ΔT over time) and link observability dashboards to disclosure
tools or corporate sustainability platforms.

EU Taxonomy Regulation: Substantial Contribution and DNSH

The EU Taxonomy (Regulation (EU) 2020/852) defines criteria for economic activities to
be classified as “environmentally sustainable.”

Data center activities must:

• Substantially contribute to at least one environmental goal (e.g., climate
mitigation)

• Not significantly harming other (DNSH) (e.g., water ecosystems, circular
economy)

• Respect minimum social and governance safeguards

Mapped DNSH Considerations:

DNSH Pillar Observability Design Response

Climate mitigation Real-time PUE tracking, renewable energy source tagging

Water protection Integration with water flow meters (cooling towers, CRAC)

Pollution prevention Waste heat BTU tracking, ΔT differentials across containment
zones

Circular economy Equipment age/lifecycle telemetry for predictive replacement

Resource use
efficiency Load balancing visualizations and underutilization reports

Design Implication: Introduce metadata tags for DNSH coverage at rack, room, and site
levels. Support spatial overlays and metric summaries that reflect taxonomy criteria.

Energy Reuse and the Energy Reuse Factor (ERF)

Per Annex I of Delegated Regulation (EU) 2024/1364, ERF must be reported—the
proportion of energy repurposed for heating or secondary uses. This requires in-rack
temperature and airflow telemetry, waste heat measurement (via BTU estimation or
Redfish API), and tracking reuse-eligible versus total energy consumed.

Design Implication: Extend telemetry to support ERF calculations and heat reuse
mapping; include compliance indicators for areas with reclaimable heat versus passive
losses.

Water Usage and Cooling Efficiency

Data centers using adiabatic or evaporative cooling must now report water usage in line
with EED Article 12 and 2024/1364. Mapped Requirements are Flow sensor integration
(via Modbus, BACnet, or REST). Normalization of usage per kWh delivered IT load and
Geotagging for water-stressed regions and governance zones.

Design Implication: Ingest and store water metrics alongside energy, apply temporal
alignment, and ensure audit traceability and add a telemetry schema extension to
support WUE (Water Usage Effectiveness) export.

Climate Neutral Data Centre Pact (CNDCP) Self-Audit Metrics

• Operators participating in the CNDCP pledge to:
• Achieve PUE targets (≤1.3 for cooler zones),
• Reach 100% renewable energy by 2030,
• Implement heat reuse and water efficiency goals.

Design Implication: Introduce a Pact Compliance Dashboard template (see Appendix
D), summarizing PUE trends and violations, Renewable sourcing status, Waste heat
reclaims rate and zones of potential, Energy and water KPIs over time (rolling and
seasonal).

The dashboard should support PDF/JSON/CSV exports, optionally validated against Pact
milestones for automated self-audit.

Regulatory Design as System Constraint

Advanced regulatory frameworks no longer act solely as external requirements - they
now serve as architectural constraints that shape metadata schemas, telemetry
priorities, and reporting outputs. Designing for EU Taxonomy alignment or CSRD audit-
readiness from the outset reduces long-term retrofit costs and positions observability
platforms as not just technical, but strategic enablers of sustainability disclosure.

2 Understanding Datacenter Monitoring and
Observability

2.4 Overview
Datacenter monitoring and observability are closely related; however, observability
goes beyond traditional monitoring which focuses on understanding and analyzing the
state of target systems based on their outputs.

Observability enables organizations to detect, diagnose and act towards timely and/or
proactive resolution of issues through the added benefits of deeper insights in said
systems.

In summary, observability is the practice of using telemetry data – logs, metrics, traces,
outputs to understand the behavior of systems with the goal of enhanced management,
enhanced stability, design, identification of bottlenecks, predicting failures and
proactive actions.

Datacenter monitoring and observability are essential for modern infrastructure
management. They go beyond merely tracking metrics to include comprehensive
insights into system behavior and configuration states.

With the inclusion of CMDB and desired state reporting, we enhance visibility and
control, ensuring systems remain aligned with operational goals and compliance
requirements.

Monitoring focuses on "How it is going and what happened," while observability seeks to
answer, "Is it acceptable and why it happened." With CMDB and desired state reporting,
organizations can also address "how it aligns with expected behavior."

2.4.1 Hardware Layer
The Hardware Layer is the foundation for observability by providing telemetry data from
specific datacenter components, such as:

- Embedded Monitoring Units: acts as a central point for collecting telemetry
data from/about connected devices

- Power Distribution Units (PDU’s): Provides detailed metrics on power usage,
capacity, efficiency, fluctuations & etc.

- Environmental sensors: Capture information like temperature, humidity, for
overall analysis of environmental parameters. Embedded monitoring

- Switches and Breakers: Offer operational metrics and fault detection
capabilities.

2.4.2 Observability Software Layer
The Observability Software Layer collects, processes and organizes telemetry data from
the hardware layer with features that include:

- Telemetry Aggregation: Collects logs, metrics, traces, outputs from targeted
hardware sources.

- Data Processing and Correlation: Links data points to dependencies, issues
and desired insight.

- Timely Analysis: pattern and anomalies identification upon occurrence
- Configuration Management Integration: Continuously synchronization with

CMDB to reflect the current state.
- Desired State Management: Monitoring resources to ensure alignment with

predefined configurations, alerting to deviations and config drift.
- Self-Healing Capabilities: Automatic remediate discrepancies between current

and desired states when possible.

2.4.3 API and Telemetry Layer
This layer acts as a bridge between the hardware, monitoring and observability platform,
external and third-party systems/tools. This layer includes:

- Access to CMDB Data: Enables real-time querying and updates to maintain
synchronization between the physical and logical infrastructure.

- Standardized Interfaces: OpenTelemetry, SNMP, and REST APIs facilitate
integration with observability and configuration.

- Desired State Reporting: APIs support state validation workflows, generating
reports that highlight compliance or deviations.

- Standardized Access: Interfaces like OpenTelemetry, Redfish API, REST API and
SNMP enable uniform data collection and interaction.

- Integration: Facilitates interoperability, management, orchestration, and
analytics platforms.

- Programmatic Control: Allows automation, robotic workflows and
customization of data pipelines.

2.4.4 Visualization and Insights Layer
This layer represents the actual point where stakeholders and interested parties (users)
interact with monitoring and observability data. It includes:

- Dashboards: visual representation of key metrics and trends
- Alerting mechanisms: Notification for threshold breaches or anomalies
- Advanced Analytics: Historical and empirical analysis
- CMDB Visualization: integrated view of hardware and software configurations

- Desired State Reports: Highlights discrepancies between the current and
desired states, including possible actionable insights into remediation.

- Floorplan Visualization and Heatmapping: Provides briefly graphical
representation of data such as rack location, consumption, acceptable operating
parameters, capacity etc.

- Predictive Analytics and Alerts: Based on telemetry data and CMDB
information to predict states and/or issues.

2.5 Core Principles of Datacenter Monitoring and Observability

Principle Name Description

Telemetry driven
insights

Capturing and analysis of telemetry data such as logs,
metrics, and traces and outputs to provide actionable
insights into system behavior and performance.

Resource Visibility
Ensures all hardware and software resources, such as
PDUs, Embedded Monitoring Units, and sensors, are visible
and accounted for in monitoring systems.

Dynamic Resource
Allocation

Allocating monitoring resources dynamically to adapt to
changing workloads and environments against CMDB

Automation and
Orchestration

Automates observability workflows and aligns resource
allocation with real-world operational demands.

Interoperability
Ensures integration with diverse tools, platforms, and
telemetry standards through APIs and open protocols.

Scalability and
Elasticity

Enables observability solutions to scale as infrastructure
grows, ensuring consistent performance across
environments.

Proactive Maintenance Predicts potential failures using advanced analytics.

Data Correlation and
Context

Links telemetry data from multiple sources to provide
context.

Flexibility and
Adaptability

Adapts monitoring and observability processes to
accommodate new technologies and evolving business
requirements.

Software-Defined
Control

Uses software to manage and configure observability
processes, ensuring scalability and adaptability.

Resource Isolation Ensure observability workloads do not interfere with
operational systems, preserving performance and security.

Resource Efficiency Optimizes the use of resources for telemetry collection and
analysis, reducing overhead.

2.5.1 Benefits of Observability
Effective observability brings transformative benefits to datacenter management:

- Deep System Understanding: Observability provides detailed insights into the
internal state of systems, revealing dependencies, operational state and potential
risks.

- Proactive Management: Predictive analytics enables addressing issues before they
impact operations.

- Enhanced Automation: Observability data powers automation workflows for
incident response and resource optimization.

- Integration: Open standards and APIs facilitate interoperability with existing IT and
operational platforms.

2.5.2 Observability vs. Monitoring
While monitoring tracks predefined metrics and alerts when anomalies occur,
observability takes a broader approach:

- Monitoring answers the question, “What is wrong and how it is going?”
- Observability answers the question, “Is it normal and why is it wrong?”

Aspect Monitoring Observability
Scope Tracks Predefined

metrics and states
Analyzes telemetry to provide insights
about system state and behavior.

Focus What is wrong and how
is it going?

Is it normal and why is it wrong?

Data Sources Metrics from specific
components like PDUs
or sensors.

Combines metrics, logs, outputs and
traces for a holistic view.

Use Cases Threshold-based alerts
and basic performance
tracking.

Root cause analysis, anomaly
detection, and predictive analytics.

2.5.3 Benefits of Integrating CMDB and Desired State Reporting
Integrating CMDB and desired state reporting into monitoring and observability practices
provides significant advantages:

Configuration Compliance: Ensures that all resources remain aligned with predefined
baselines.

Enhanced Reliability: Timely identification and remediation of discrepancies.

Centralized Management: Consolidates configuration and telemetry data for a holistic
view of the datacenter or datacenter units.

Predictive Insights: Combines CMDB data with telemetry to anticipate configuration
drift and its impact.

Improved Governance: Strengthens auditability and compliance with industry
standards.

2.5.4 Monitoring, Observability and Desired State Reporting Example
Scenario: Configuration drift detected in a critical power distribution unit (PDU) with
parameter threshold crossing in line with prior definition.

The process follows the pattern:

1. Data Collection & Alerting: The PDU telemetry indicates unexpected behavior.
2. CMDB Validation: Observability tools query the CMDB and detect that the

current configuration does not match the desired state.
3. Root Cause Analysis: Logs and traces correlate the drift to a recent automated

firmware update.
4. Automated Remediation: The system rolls back the firmware to the desired

version and updates the CMDB.
5. Reporting: A desired state compliance report is generated, documenting the

issue and resolution for auditing purposes.

To translate these principles into reality, we now provide a detailed implementation
roadmap—outlining how to deploy and operate the observability platform across
environments. ￼

3 Stakeholders and Organizational Impact
A solution is only as valuable as the problems it solves for its users. This section maps
key internal and external stakeholder groups across data center ecosystems,
highlighting their priorities and challenges. By understanding business and operational
needs, we ensure the observability platform is tailored for real-world impact. Each
stakeholder group introduced here will have its requirements addressed in the
subsequent architectural and implementation sections.

We hereby undertake an exemplary exploration of how observability practices affect
specific stakeholder groups within the company. Understanding the who (i.e., key roles)
and what (i.e., processes, workflows) is essential to articulating observability’s strategic
importance, especially for business professionals seeking buy-in from multiple parts of
the organization.

3.1 Why Stakeholders Matter
The company operates an extensive global network of datacenters, co-locations and
cloud environments, serving both external and internal clients, teams and interest
groups. Therefore, it is standard practice that each facility must align to stringent
requirements such as (but not limited to): uptime, availability, stability, compliance
and energy-efficiency.

Complexity: Multiple hardware vendors, open-source tools, proprietary components,
and partner integrations.

Accountability: Strict service-level agreements (SLAs) with enterprise customers
require efficient incident management and rapid response times.

Sustainability: Sustainability metrics are critical across all data center locations.

Having these imperatives in mind, a wide range of stakeholders - beyond just data center
operators - depend on reliable observability data. In this document we detail each
group’s concerns and how observability transforms their respective workflows.

3.2 Stakeholder Impact & Review Matrix
Data Center Observability is not a standalone technological function - it is a business-
critical enabler across multiple stakeholder groups. In this section we attempt to
provide a detailed mapping of each stakeholder group's priorities, the value derived from
observability, and how the ApeiroRA Monitoring Blueprint addresses their specific
needs.

Stakeholder Group Primary Responsibilities

Data Center Operations &
Engineering

Power/cooling oversight, infrastructure
health, PDU/Embedded Monitoring Units
maintenance

Infrastructure Architecture &
Capacity Planning

Rack layout, scaling plans, energy design,
power balance modeling

Sustainability & Energy Efficiency
Teams

Energy footprint analysis, carbon reduction,
reporting for GHG protocols

Security & Compliance Audit readiness, fault logging, tamper alerts

Procurement & Asset Management Inventory alignment, lifecycle planning, cost
optimization

Incident & Operations Management
(RunOps/NOC)

Incident triage, SLA compliance, root cause
analysis

Cloud/Platform Engineering Integration into cloud-native stacks, API
access, GitOps

Management & Governance Investment visibility, risk posture, policy
enforcement

Table 1: Stakeholder Landscape and Responsibilities

Stakeholder How Observability Supports
Their Role Specific Feature Mapping

DC Ops & Engineering Dashboards, alerting, and root-
cause analysis

SNMP telemetry from
PDUs/Management points, alerts
on 75%/95% thresholds

Infrastructure
Architects

Predictive analytics, capacity
utilization, load balancing

Consumption trends,
rack/row/room granularity

Sustainability Teams Visibility, carbon load tracking,
anomaly detection

kWh tracking per rack/row/DC,
load vs. estimated power vs.
contract capacity

Security & Compliance Fault/event correlation, tamper
detection, audit logs

Logstash enrichment, Ticketing
Platform for incident traceability,
config drift validation

Incident Management
(NOC/RunOps)

Single source of truth during
outages

Ticketing + Data Lake + Alerting,
PDU variance alerts

Cloud/Platform Teams CI/CD pipeline compatibility,
declarative infrastructure

GitHub Actions, Helm, Open
Telemetry, Redfish API

Leadership &
Governance

Evidence for strategic
investments and compliance

KPI dashboards, audit
compliance snapshots, capacity
prediction charts

Table 2: Stakeholder Impact Summary

Stakeholder Sample KPI / Outcome

DC Ops & Eng 50% faster root-cause resolution, 75% reduction in false
alarms

Sustainability Monthly GHG report automation, kWh per rack metric

Architects Capacity forecast accuracy >90%

Security Zero untracked config drifts in PDU Embedded Monitoring
Units zones

Procurement Asset utilization ratio >85%

Incident Teams <15 min MTTR for power-related incidents

Cloud Engineers Zero downtime during reconfigurations via GitOps

Governance Blueprint adoption in 100% of new DC zones by 2025 Q3
Table 3: Stakeholder Outcomes & KPIs (example)

3.3 Primary Stakeholder Groups

3.6.1 Data Center Operations & Engineering

Responsibilities

• Oversee daily infrastructure tasks: power distribution, cooling, rack
management.

• Maintain actual status for critical components like: Embedded Monitoring
Units, PDUs, Breakers, Loads and Environmental Sensors.

Observability Benefits

• Improved Incident Response: Unified dashboards for SNMP/Redfish data
expedite root-cause analysis (see Section 4.1.3). Operators can detect power
overloads or thermal anomalies in seconds.

• Compliance & Reporting: Automated logs and continuous polling support
streamlined audits (e.g., ISO 27001, EN 50600).

• Scalability: Leveraging open frameworks (Kubernetes, Open Compute Project)
helps standardize new deployments without vendor-specific constraints.

3.6.2 Capacity Planning & Infrastructure Architecture

Responsibilities

Strategically planned expansions, cluster configurations, and future resource
allocations for cloud and on-premises offerings.

Ensure synergy between emerging technologies (e.g., hyperconverged systems,
container orchestration) and existing data center assets.

Observability Benefits

Predictive Capacity Management: Historical usage trends, from rack-level power
metrics to container CPU usage, feed into sophisticated modeling for future growth
scenarios.

Reduced Overprovisioning: Visibility into real utilization helps right-size deployments -
especially crucial as companies pivots toward “green data centers” where capacity
must meet sustainability goals.

Rapid Innovation: Observability fosters faster trial cycles for new hardware or cloud
services, as architectural impact is visible in near-real-time logs and telemetry.

3.6.3 Operations & Incident Management Teams

Responsibilities

• Manage cross-data-center events.
• Uphold global SLAs for enterprise software customers.

Observability Benefits

• Single Source of Truth: Combining central data ingestion with Ticketing
integration enables incident teams to see correlated alerts across geographies.

• Faster MTTR: Granular data from PDUs, temperature sensors, and system logs
reduce guesswork, zero in on anomalies that span infrastructure and application
layers.

• Proactive Alerts: Telemetry-driven thresholds (e.g., socket-level consumption
over 80%) to prevent cascading failures and SLA breaches.

3.6.4 Finance, Procurement & Vendor Management

Responsibilities

• Oversee costs for hardware procurement, power and cooling infrastructure,
large-scale DC production environments.

• Negotiate vendor contracts to align with strategic and sustainability objectives.

Observability Benefits

• Cost Visibility: PDU metrics at the socket or row level highlight potential
inefficiencies (e.g., heavily over-utilized PDUs in one region vs. underutilized
capacity in another).

• Data-Backed Negotiation: Detailed usage data supports more effective vendor
contract discussions—whether for electricity rates or specialized hardware

• Budget Forecasting: Historical consumption patterns are invaluable for
accurate quarterly or annual budgeting, aligning with major product lines or
planned capacity expansions.

3.6.5 Sustainability & Compliance Officers

Responsibilities

• Oversee environmental commitments, ensuring carbon footprint reduction and
compliance with EU data protection and energy directives.

• Publish internal sustainability reports and facilitate external audits (e.g., for Data
Center Efficiency classification).

Observability Benefits

• Granular Energy Tracking: Observability data—temperature, humidity, power
usage—feeds into carbon footprint analyses and continuous improvement in
PUE (Power Usage Effectiveness) and for meeting ESG (Environmental, Social,
Governance) reporting criteria.

• Regulatory Readiness: Automated logging and centralized data archiving for
simplified compliance with local regulations, such as Germany’s EnWG for
energy and water usage or the EU’s Code of Conduct for Data Centers.

• Transparency & Innovation: Visibility into exact load distribution encourages
pilot projects (e.g., reusing waste heat or advanced cooling solutions) to achieve
net-zero goals.

3.6.6 Executive Leadership & Business Strategy

Responsibilities

• Assist in strategic roadmap on IT investments or expansions.
• Monitor risk exposure, brand reputation.

Observability Benefits

• Holistic Risk Assessment: Executive-friendly dashboards highlight high-
risk areas, e.g., a cluster nearing capacity or repeated sensor alerts in a key
data center.

• Strategic ROI: Data-driven evidence of reduced downtime, operational costs,
and carbon footprint.

• Competitive Differentiation: By demonstrating robust observability across
all data centers, companies can showcase resilience and sustainability as
part of their unique value proposition.

3.6.7 Impact on Core Processes

Beyond targeting specific roles, Observability reshapes fundamental data center and
cloud operations:

- Incident Response Workflow

Enhancement: correlation of events—power surge plus specific usage spike—enables
immediate escalation to the right on-call teams.

Outcome: Fewer false alarms, shorter mean time to acknowledge (MTTA), and overall
improved service availability.

- Change & Release Management

Enhancement: Observability data integrated into GitHub Actions (or other CI/CD
pipelines) ensures new configurations are monitored from the first deployment.

Outcome: Rapid feedback on performance regressions or environmental anomalies,
mitigating production-level disruptions.

- Resource & Capacity Forecasting

Enhancement: Historical usage patterns feed ML-driven forecasting to anticipate peak
demands (e.g., during software version upgrades or seasonal cycles).

Outcome: Balanced allocations across global data center estate, minimizing both
overprovisioning and sudden capacity crunches.

- Budget & Cost Allocation

Enhancement: Usage of metrics at the organizational unit level allow each department
to see real costs tied to their workloads (e.g., a dev/test environment versus a productive
system).

Outcome: Greater accountability and potential cost savings as departments make more
informed scale decisions.

3.6.8 Linking Observability to Broader Goals

Observability is not simply a “tool upgrade,” but rather a strategic capability:

• Digital Transformation: It underpins the shift to agile, software-defined data
centers, ensuring that insights support continuous improvement and innovation.

• Global Standardization: Observability fosters consistent processes across
numerous data centers, reinforcing best practices and shared standards.

• Customer Confidence: Transparent, well-documented data center performance
helps assure clients, especially those in regulated industries, that their
mission-critical solutions are supported by compliant, stable, efficient, and eco-
friendly infrastructure.

3.6.9 Examples of use cases that can be achieved with the proposed
solution:

Category Use Case Description Purpose

Power
Monitoring

Power
Consumption
Monitoring

Monitor Power
Consumption Multiple
Levels - Floor, Cage,
Containment zone,
Row, Rack, PDU, Socket
kWh)

Ensure efficiency, Avoid
overloads & disbalance,
track trends, cross-
reference, Observer
Power Posture

Power
Monitoring

Power Load
Monitoring

Monitor Power load on
Multiple Levels - Floor,
Cage, Containment
zone, Row, Rack, PDU,
Socket (kW)

Ensure efficiency, Avoid
overloads & imbalance,
track trends, cross-
reference, Observer
Power Posture

Power
Monitoring

Phase
Balance
Monitoring

Track phase loading and
correlate with historical
patterns, measure
against desired state
and maximum capacity

Prevent inefficiencies
and ensure balanced
power usage against
desired state

Power
Monitoring

Circuit
breaker
Monitoring

Monitor and alert on
circuit breaker trips or
nearing capacity limits

Enable preventative
maintenance, avoid
downtime to the extent
possible

Power
Monitoring

Socket-Level
Load Analysis

Evaluate individual
socket load patterns to
detect underutilization
or overdraw

Enable capacity
planning, reduce energy
waste, ensure proper
balancing

Environmenta
l Monitoring

Temperature
Mapping

Display heatmaps and
trends for rack and
whitespace
temperature

Avoid overheating and
optimize cooling
strategies

Alerting &
incident
Management

Threshold
based alerts

Configure alerts for
power events

Rapid Response for
critical deviation or
catastrophic failures

Alerting &
incident
Management

Threshold
based alerts

Configure alerts for
temperature events

Rapid Response for
critical deviation or
catastrophic failures

Alerting &
incident
Management

Critical Event
detection

Detect and log SNMP
traps for high-priority
events (e.g., UPS, PDU
failures) (Also possible
thrum Redfish or REST
API) - Power

Ensure Timely reaction in
connection with
operational disruption
avoidance

Alerting &
incident
Management

Critical Event
detection

Detect and log SNMP
traps for high-priority
events (e.g., UPS, PDU
failures) (Also possible

Ensure Timely reaction in
connection with
operational disruption
avoidance

thrum Redfish or REST
API) - Temperature

Alerting &
incident
Management

Incident
Correlation

Correlation Power &
Environmental metrics
to enable RCA

Enhance and Enable RCA
+ Resolution speed (TTF)

Alerting &
incident
Management

Rack
Utilization
and balancing

Visualize rack-level
power and cooling
usage for balance and
optimization

Prevent overloading and
improve resource
allocation

Integration Data Lake
Integration

Send aggregated
metrics into enterprise
data lakes for initial
analytics usage

Data Aggregation,
Reporting, Enrichment &
etc.

Security

Embedded
Monitoring
Units and
Device
Access
Monitoring

Monitor access
attempts and
configuration changes
on Embedded
Monitoring Units

security and audit trails

Security
Firmware
Compliance
monitoring

Track Firmware version
and PDU against
compliant versions
(automatic version
alerting & enforcement)

Ensure security
compliance, reduce
vulnerability risks

Alerting &
incident
Management

Configuration
Delta
Detection

Detect deviations
between live
configurations and
desired state stored in
CMDB

consistency and
compliance with system
standards

Compliance
Reporting

Energy
Consumption
Reporting

Create consumption
reports for audits /
compliance (carbon
footprint reporting &
etc. if needed)

Meet regulatory
requirements and
support sustainability

Compliance
Reporting

Carbon
Footprint
reporting

Monitor power usage to
calculate DC carbon
footprint

Regulatory reporting
needs specially in the EU

Integration
Automated
Configuration
Updates

Dynamically updated
SNMP polling settings or
thresholds based on
system changes

 up-to-date configuration
and aligned with
operations, maintenance
& demand management

Environmenta
l Monitoring

Humidity
Mapping

Display heatmaps and
trends for whitespace
humidity

Avoid overheating and
optimize cooling
strategies

Alerting &
incident
Management

Threshold
based alerts

Configure alerts for
humidity events

Rapid Response for
critical deviation or
catastrophic failures

Alerting &
incident
Management

Critical Event
detection

Detect and log SNMP
traps for high-priority
events (e.g., UPS, PDU
failures) (Also possible
thrum Redfish or REST
API) - Humidity

Ensure Timely reaction in
connection with
operational disruption
avoidance

Compliance
Reporting

SLA & Uptime
Monitoring

Monitor uptime metrics
+ Reporting against
SLA/OLA

Compliance assurance,
reliability

Having mapped the stakeholder landscape and strategic impact, we now explore the
underlying technical framework that supports scalable, composable, and interoperable
observability.

4 Framework Design

4.1 Logical Architecture
The observability platform is architected around modular, loosely coupled layers that
separate concerns across data acquisition, processing, orchestration, integration, and
visualization. It is built with open-source components and industry-standard protocols
to ensure interoperability, scalability, and enterprise-readiness.

The architecture integrates critical tools and technologies into distinct layers.

A. Data Source & Protocol Interfaces:

Protocol / Interface Purpose
SNMP (v2c / v3) Polls metrics and receives traps from PDUs, EMUs, circuit

breakers, and sensors
Redfish API (REST) Collects structured telemetry from Redfish-compatible smart

power/thermal devices
OpenTelemetry
Protocol (OTLP)

Aggregates logs, traces, and metrics from distributed services
and agents

REST APIs Interfaces for CMDB or third-party data pull/push operations

These protocols enable secure, standardized communication with devices across
heterogeneous environments.

Data Collection & Ingestion:

• Telegraf: Collects SNMP metrics and traps from Embedded Monitoring Units,
PDUs, and environmental sensors.

• Redfish Collector: (Python/REST-based or plugin-based): Gathers metrics over
HTTPS from Redfish-enabled devices.

• OpenTelemetry Collector: Ingests logs, traces, and metrics from agents
deployed on infrastructure or services.

All collectors need to be configured with polling frequency, authentication, device
mapping, retry logic & etc.

B. Orchestration and Deployment
- Kubernetes (Gardener): Orchestrates containerized components and ensures

scalability including fault tolerance
- Greenhouse: Simplified deployment and management of applications including

version-controlled deployment configuration among distributed clusters
C. Data Processing:
- Collector-processors: Processing and transformation of SNMP and telemetry

data
- Data lake: Metrics/events storage, indexing, enrichment and querying.
D. Integration
- CMDB: Manages inventory, device metadata, desired and current state, providing

visualization support.
- Ticketing Platform: handles incident response and workflow automation
- Observability layer and correlation engine: Receives enriched analytics for

data lake and observability analytics.
E. Visualization:
- CMDB: Floorplan visualization, heatmap & overview
- Perses: Dashboards, data analysis

4.2. Metrics Monitored
 Power Metrics:

Metric Description

PDU Socket Level
Consumption

Measures how much power is drawn from each outlet/socket on
a PDU (in kWh). Helps track energy use per device.

Phase Balancing
Evaluates whether the electrical load is evenly distributed
across all three power phases. Imbalance may reduce
efficiency or cause faults.

Power Load
Distribution

Tracks how power usage is distributed across racks, cages, and
floors. Highlights hotspots or underutilized zones.

Consumption
Fluctuations
(Peaks)

Highlights sudden power spikes, which may indicate faults,
high-load events, or cooling failure responses.

Power Stability
Monitors the consistency of power delivery over time (e.g.,
voltage/current variation). Instability may signal upstream
electrical issues.

Power Capacity
Consumption

Measures current consumption against rated capacity of PDUs
or circuits. Helps avoid overloads and triggers capacity alerts.

Environmental Conditions:

Metric Description
Temperature Real-time and historical readings from rack, row, or room-level

sensors. Helps manage thermal profiles and cooling efficiency.
Humidity Tracks moisture levels within whitespace. Helps prevent

equipment corrosion or electrostatic discharge.

Device Health:

Metric Description
Uptime Measures the operational availability of PDUs, EMUs, and other

monitored devices.
Error Logging Captures and classifies error events, warnings, or critical

system logs from devices.
Device Response
Metrics

Evaluates latency, success/failure of SNMP or API queries —
signals device health and communication issues.

Fault Telemetry Detects hardware-specific alerts like breaker trips, thermal
failures, or tamper events.

To support such a platform, the infrastructure itself must be modular and dynamic. The
next section introduces composable infrastructure and how it enables flexibility and
control.

4.3 Data Quality & Normalization Principles
Any operational and fit for purpose observability platform relies on clean, consistent,
and structured data to deliver meaningful insights, enable automation, and support
downstream decision-making processes. In heterogeneous data center environments
where equipment varies by vendor, model, firmware version, and communication
protocol, ensuring data quality and semantic consistency becomes foundational to
success.

This section outlines the principles and practices ensuring data ingested into the
observability pipeline is normalized, consistent, and enterprise-usable across all
modules.

4.3.1 Unified Data Model

All incoming telemetry — whether SNMP-based metrics, Redfish payloads,
OpenTelemetry streams, or REST API results, is transformed into a unified internal data
model (extending OpenTelemetry timeseries model and semantic conventions). This
common format allows systems to interpret data uniformly across locations and
devices.

Examples of Primary Fields:

• hw.type (e.g., “PDU”, “Embedded Monitoring Units”, “temperature_sensor”)
• hw.name (canonicalized identifier: DC-WDF-CAGE3-PDU-04)
• timestamp (UTC ISO 8601)
• location.path (hierarchical: DC > Cage > Rack > Device)
• hw.status (ok/degraded/failed)
• source_protocol (SNMP, Redfish, OTEL, etc.)

In this example the scheme is enforced in data collection pipelines, ensuring
consistency regardless of source heterogeneity.

4.3.2 Naming & Tagging Conventions

Inconsistent naming is one of the primary causes of operational drift and observability
blind spots. Therefore, a strict naming and tagging convention is used for all devices and
metrics.

Device Names:

• Follows the pattern: Location Code-Room/CageCode-DeviceType-Sequence
• Example: DC-FRA-CG2-PDU-08

Rack Identifiers:

• Should match CMDB entries: RACK-WDF-01-15A

Metric Namespaces:

• Use dot notation with clear hierarchy: power. socket. load_kw, env. temp_c,
breaker. status

Tagging:

• All data points include tags for site_id, rack_id, EMU_id, device_vendor,
firmware_version, and region

• Tags are critical for filtering, alert scoping, and dashboard generation

Enforcement of naming policies is integrated into CMDB through validation rules and
form constraints.

4.3.3 Timestamp Synchronization

• All devices must provide telemetry with timestamps either in UTC or local time
zone with offset metadata.

• Embedded Monitoring Units without native timestamp support will have polling
timestamps assigned by a collector, with a fixed polling interval.

• NTP synchronization is a hard requirement for all management devices,
Embedded Monitoring Units, and hosts to prevent false-positive alerts caused by
time drift.

4.3.4 Metric Normalization & Unit Handling

Vendors expose metrics in inconsistent units (e.g., watts vs. kilowatts, Fahrenheit vs.
Celsius). This platform standardizes units for analytical consistency.

Standard Units:

• Power: kW
• Energy: kWh
• Temperature: °C
• Humidity: %
• Load/Capacity: %

All incoming metrics undergo unit normalization inside Logstash or Telegraf using
transformation filters. Any metric that cannot be reliably converted is flagged and
optionally dropped, ensuring data cleanliness over data completeness.

4.3.5 Data Integrity & Validation

To prevent corrupt or misleading data:

Zero and Null Handling:

• null, NaN, or zero values from known faulty sensors are discarded or flagged via
status=unknown

Out-of-Range Detection:

• Thresholds are applied at the edge to drop or flag impossible values (e.g.,
temperature > 85°C, socket load > rated value)

Rate of Change Validation:

• Sudden changes are compared against prior samples (e.g., power load spike of
300% triggers a review)

These validations ensure that dashboards and automated alerts are not polluted by low-
quality or erratic data.

4.3.6 Deviation Correction Model for Quantized Power Telemetry in PDUs

Some PDUs sometimes exhibit telemetry quantization effects, where reported power
values are rounded to coarse steps - typically in 0.1 kW increments. This results in
significant loss of resolution for low-power devices (<200 W), leading to underreported
or zeroed-out power readings. This behavior introduces systematic deviation that
hampers monitoring fidelity, capacity planning, and energy reporting accuracy.

4.3.6.1 Observed Behavior & Problem Statement

In example:

- Ptrue to be the actual power consumption at a given time (in Watts)
- Preported to be the power reported by the PDU

For Affected Devices:

𝑃{𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑}  =     ⌊
𝑃{𝑡𝑟𝑢𝑒}   

100
⌋ × 100

This causes:

- Ptrue ∈ [0,99] → Preported = 0

- Ptrue ∈ [100,199] → Preported = 100

- etc.

This quantization step of 100W (0.1kW) leads to:

- Up to 99W of underreporting per socket
- Aggregate underestimation of load
- Inaccurate power heatmaps and failure to trigger alerts

4.3.6.1 Proposed Correction Model

The correction model leverages more granular telemetry inputs voltage and current to
compute apparent power, which avoids the quantization bias present in the reported
real power.

4.3.6.1.1 Apparent Power Estimation

Given:

- I : RMS current reported by the PDU (in Amperes)
- V : RMS voltage reported by the PDU (in Volts)

Then the apparent power is S = V × I [in VA]

To convert to kilowatts: 𝑃estimated = S
1000

If Power Factor (PF) is known or can be assumed: 𝑃estimated =

Where PF ∈ [0.8, 1.0] depending on the device

4.3.6.1.1 Correction Logic

We define the corrected power reading:

Pcorrected =

If Preported is a multiple of 100W and deviation > ∈

Where:

- ∈ is a defined tolerance threshold (e.g., 20W)
- A deviation flag can be raised if Preported – Pestimated | > ∈

4.3.6.2 Algorithmic Steps

1.Poll SNMP OIDs for:

- V: Voltage per socket (or bank)
- I: Current per socket (or bank)
- Preported : Real power per socket

2. Compute Pestimated = V × I/1000
3. Compare Pestimated and Preported
4. If deviation > ∈, substitute Pcorrected = Pestimated
5. Flag deviations for visualization and alerting

Example:

Let:

• V=230 V

• I=0.43 A

• PF=0.95

Then: Pestimated =  
230×0.43×0.95

1000
≈ 93.9 W

Assuming:

- Preported = 0 W

- ∈ = 20W

V x I x PF
1000

{

Pestimated
Preported

Then: |𝑃𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑃𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑| = 93.9 W > 20 W ⇒ 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 93.9 W

4.3.6.3 Operational Deployment Notes

Implementing the deviation correction model in a real-world observability platform
requires thoughtful integration with existing telemetry pipelines and system
architecture. The following considerations guide the operationalization of the model:

Pipeline-Level Correction:

Deviation correction should be applied during the data ingestion phase, prior to storage
or visualization. Tools such as Logstash (via Ruby filters), Telegraf (via Starlark or execd
processor plugins), or Kafka Streams can be used to calculate estimated power values
based on voltage and current telemetry, compare them against reported values, and
override where deviations exceed defined thresholds.

Deviation Metadata Management:

Corrected readings must include associated metadata, such as:

• correction_applied: true/false

• original_reported_value

• correction_method

• deviation_amount (W)

This metadata ensures transparency, facilitates root cause analysis, and supports
auditability, especially in regulatory or billing-sensitive environments.

Power Factor (PF) Handling:

When PF is not explicitly reported by the PDU, estimated real power should be derived
using:

• Default values by device category (e.g., compute servers: 0.95, storage: 0.9)
• Operator-defined constants via configuration
• Adaptive heuristics, e.g., mapping PF to outlet type (C13/C19), or based on

historical device signatures.

Accuracy Optimization for Critical Use Cases:

For environments requiring high accuracy, such as:

• Energy billing and chargeback models
• Regulatory reporting for CO₂ impact or PUE

The correction model should incorporate cross-referenced measurements from
calibrated power meters or rack-level sensors, ensuring reconciliation of estimated

values with known ground truths. This may involve periodic calibration jobs or Bayesian
smoothing of noisy SNMP signals.

Alert and Dashboard Integration:

Visualizations (e.g., Kibana) and alerts must reflect both corrected and reported values,
especially where large deltas may indicate:

• Firmware bugs
• Device degradation
• Environmental influences (e.g., voltage sag)

This transparency supports operational decision-making and increases trust in
observability outputs.

Extensibility and Modularity:

The correction logic should be encapsulated in modular enrichment components
decoupled from ingestion logic, allowing independent updates, hot-patching, and
vendor-specific adaptations.

4.3.6.4 Limitations and Considerations

While the deviation correction model significantly improves telemetry fidelity in some
environments, it also comes with inherent limitations and practical boundaries.

Apparent vs. Real Power Estimation:

The model estimates real power from apparent power, relying on an assumed or
configurable power factor (PF). Since PF varies with workload type, power supply
efficiency, and transient conditions, the estimation remains an approximation. Without
direct PF telemetry, precise restoration of real power is not possible.

Granularity Constraints in Legacy Devices:

Some PDUs lack per-socket or per-bank telemetry, exposing only total or aggregated
readings.

In such cases:

• Socket-level deviation correction cannot be applied.
• Aggregated estimations may obscure localized power anomalies.

This limits the model’s applicability to device-level or phase-level corrections only.

Firmware/Hardware Override Scenarios

If the vendor releases firmware updates that address the rounding issue or provide
enhanced MIB access (e.g., unquantized values, PF telemetry), the correction model
should be automatically disabled or bypassed to prevent double-modification and
preserve original device fidelity.

Model Suitability Boundaries

The model is intended for operational visibility, anomaly detection, and predictive
analytics. It is not certified for regulatory metering, legal energy billing, or forensic
analysis where IEC-certified instrumentation is required.

Device-Specific Behavior

Correction logic must account for device-specific variations, such as:

• Different rounding schemes (e.g., ceiling vs. floor)
• Per-phase vs. per-outlet inconsistency
• Manufacturer-specific voltage scaling (e.g., 10x encoded)

Maintenance and Exception Handling

When deviation exceeds a predefined maximum threshold (e.g., 150 W), this may
indicate a hardware fault, configuration drift, or telemetry mismatch. In such cases,
operators should be alerted to investigate further rather than apply blind correction.

4.3.7 Device Identity Mapping & Source Trust

Each device is uniquely tracked across:

• SNMP OIDs, MAC addresses, and CMDB UUIDs
• Mappings are established and maintained in a Device Identity Registry, aligned

with the CMDB (CMDB)

Data ingestion pipelines cross-validate telemetry against known inventory to prevent
ingestion from:

• Rogue or Unregistered Devices
• Devices not yet approved in change control
• Devices with conflicting or spoofed identity

4.3.8 Data Enrichment Policies

After validation and normalization, data is enriched with contextual metadata pulled
from CMDB:

• Rack location (aisle, row, quadrant)

• Device role (core PDU, edge Embedded Monitoring Units, spare)
• Assigned teams or departments
• Maintenance SLA and lifecycle stage (e.g., “End of Support”)

This enables context-aware alerting, SLA-aware incident routing, and cleaner
dashboards filtered by business responsibility.

4.3.9 Monitoring Data Health

Finally, the observability stack itself is monitored for data quality indicators:

• Missing data gaps per device
• Anomalous volume drops (e.g., expected 10,000 samples/hour → currently

2,000)
• Schema violations (e.g., unexpected new field or missing tag)
• Outdated CMDB mappings triggering errors

Alerts are routed to the team responsible for observability platform health.

4.4 Security Considerations
A robust observability platform is only effective when built on a foundation of strong
security. Data center telemetry involves sensitive infrastructure data, access
credentials, and operational metadata all of which must be safeguarded to ensure
operational continuity, regulatory compliance, and the protection of global data center
landscape.

This section outlines the core security design principles, implementation strategies, and
integration requirements for the observability platform.

4.4.1 Zero Trust Architecture

The platform adopts a Zero Trust model — no component is implicitly trusted, regardless
of whether it resides inside or outside the network boundary. Every communication,
user, or process must prove its identity and authorization at every interaction.

Key Aspects:

• Micro segmentation of telemetry collection, processing, and visualization
services to reduce lateral movement risks.

• Mutual TLS (mTLS) for all internal services - external ingress points use TLS 1.2+
with strong cipher suites.

• Service identity enforcement: Every node, agent, and pipeline component are
authenticated via service accounts or certificate authorities.

• Policy enforcement points placed at ingress (API gateways, reverse proxies) and
internal traffic chokepoints.

4.4.2 Authentication & Authorization

Every interaction within the platform (e.g., device polling, data ingestion, dashboard
access, config management) must undergo strict authentication and role-based access
control (RBAC).

Components:

• CMDB & data lake: Integrated with corporate IAM (e.g., Identity Authentication
Service) using SAML/OAuth2.

• Data collectors: Service accounts with least privilege for polling and
transformation.

• Kubernetes Cluster: RBAC roles scoped to namespace and workload level
secrets stored using sealed secrets or Vault.

• Fine-grained RBAC policies defined per tool (e.g., Kubernetes, CMDB,
visualization dashboards).

• Separate human access (e.g., analyst dashboards) from machine access (e.g.,
polling agents, CI/CD systems).

• Support token-based access with automatic expiration for RESTful APIs or
Redfish endpoints.

4.4.3 Secure Telemetry Ingestion

Given the reliance on SNMP and/or Redfish:

SNMP:

• Prefer SNMPv3 (authentication + encryption) over SNMPv2c wherever supported.
• Community strings must be rotated regularly and stored encrypted (e.g.,

Kubernetes secrets or Vault).
• SNMP traps are received on dedicated secure channels with strict firewall rules

and traffic filtering.
• Use trap filtering and firewall whitelisting to restrict inbound telemetry.
• Rotate community strings or user credentials every 30–90 days.

Redfish API:

• Use HTTPS/TLS-only endpoints.
• Token-based authentication where possible, with short-lived access tokens.
• Device certificates must be validated against trusted internal certificate

authorities.
• Validate API inputs against schemas to prevent injection attacks.

4.4.4 Data Integrity and Tamper Detection

Data ingested into ELK data lake and cross-referenced via CMDB is cryptographically
hashed at rest to ensure integrity.

Techniques:

• Use Elasticsearch’s built-in support for immutable indices with timestamped
logs.

• Implement checksum validation during log ingestion for critical SNMP traps (e.g.,
PDU faults, breaker trips).

• Audit trails must be written to append-only storage for critical infrastructure
components.

4.4.5 Role-Based Access Controls (RBAC) & Segregation of Duties

Each stakeholder group (e.g., DC Ops, RunOps, Finance, Security) is granted access
only to the data and dashboards relevant to their responsibilities.

Governance:

• Read/write segregation (e.g. admins vs. viewers).
• Configuration drift alerts can only be acknowledged or overwritten by authorized

infrastructure engineering roles.
• Visualization dashboards are scoped by department/team with granular index-

level permissions.

4.4.6 Secrets & Credential Management

All secrets (SNMP credentials, Redfish API tokens, webhook keys, kubeconfigs, GitHub
Actions tokens) must be centrally managed, encrypted, and rotated.

Recommended Tools:

• Vault or Kubernetes Secrets (with Sealed Secrets for GitOps).
• GitHub Actions: Avoid storing secrets in plaintext YAML - use GitHub Secrets and

access them at runtime.

4.4.7 Secure CI/CD Pipelines

Automation workflows (e.g., GitHub Actions) that deploy Helm charts, update cluster
configurations, or manage monitoring thresholds must be secured end-to-end.

Controls:

• Use branch protection rules to restrict changes to production pipelines.
• Require code reviews for CI/CD configurations.
• Monitor CI logs for secrets exposure and enforce secure linting policies.

4.4.8 Monitoring Platform Security

The observability platform must monitor itself to detect anomalies, intrusions, or
unauthorized configuration changes.

Examples:

• SNMP traps for Embedded Monitoring Units access events pushed to data lake
and analyzed with ML for unusual patterns.

• CMDB configuration deltas (desired vs. actual) logged and retained for post-
incident forensics.

• Telemetry from Kubernetes control plane (e.g., API server logs, etcd access logs)
analyzed via OpenTelemetry collectors.

4.4.9 Compliance & Audit Readiness

All telemetry and configuration data must support internal and external audits,
particularly for frameworks such as:

ISO/IEC 27001, NIS2 (EU), EN 50600 / EN 50701, German EnWG (Energy Industry Act)

Controls:

• Immutable logs with retention policies (e.g., 1 year for critical systems).
• Automated monthly audit reports show observability platform changes, alerts,

escalations.
• Integration with Ticketing Platform GRC for ticket traceability and workflow

documentation.

4.4.10 Network and API Security

• Firewalls and segmentation restrict telemetry flows to only approved
source/destination pairs.

• Rate limiting and DoS protection applied on API endpoints and SNMP trap
receivers.

• Input validation and schema enforcement at ingestion points to prevent
malformed or malicious payloads.

Optional Enhancements (Pluggable per Maturity Level)

• SIEM integration: Feed telemetry alerts into enterprise SIEMs (e.g. Enterprise
Threat Detection).

• Multi-Factor Authentication (MFA)
• Behavioral analytics: Apply anomaly detection to telemetry patterns for early

breach detection.

4.5 Data Lifecycle Management and Compliance Considerations
As telemetry data volumes grow across the global data center landscape, managing the
lifecycle of observability data is critical. Effective lifecycle management ensures
compliance with regulatory standards, optimizes storage costs, and supports high-
performance analytics.

This platform enforces structured lifecycle practices for telemetry data, aligned with
enterprise policies and European Union regulations such as GDPR, EnWG, and the
Ecodesign Directive & etc.

4.5.1 Retention and Archiving Strategy

Telemetry data is categorized based on type, criticality, and operational usage. The
following table outlines standard retention policies and archiving behavior:

Data Type Retention Period Archival / Rollup Behavior

Power metrics (e.g., kW,
kWh per socket/PDU)

12 months
(standard) Daily aggregates after 30 days

Environmental metrics
(temperature, humidity) 6–12 months

Monthly aggregation and
compression

Alerts, Events, SNMP Traps 3–6 months Indexed for correlation -
optionally archived

Configuration Snapshots
(CMDB) 12–24 months Immutable snapshots retained

for audit compliance

User & dashboard config
logs 3 months Anonymized, non-critical,

deleted after expiration

Lifecycle tags are applied at ingestion time to support automated transitions in Data
Lake (ELK Stack).

4.5.2 Data Classification and Tagging

All telemetry data is tagged with lifecycle metadata for automated policy
enforcement:

• Data type: (e.g., power, temperature, water, CO₂)
• Sustainability relevance: (e.g., CSRD, ERF, Scope 2)
• Jurisdictional tagging: (e.g., DE, FR, EU-wide, non-EU)
• Confidentiality level: (e.g., internal, public-facing, audit-only),
• Lifecycle status: (e.g., real-time, archived, export-ready).
• Origin location: (e.g., DC-WDF-FL1-RACK12)

• Business retention class: (e.g., short-term, audit, long-term)

Integrate tagging directly at the point of ingestion and propagate through data lake or
CMDB overlays for full pipeline visibility.

Tags need to support filtered queries, dashboard scoping, and compliance-aligned
rollup or removal workflows.

4.5.3 GDPR and Regulatory Compliance Considerations in respect to data

The platform should adhere to data handling best practices in accordance with:

• GDPR (EU 2016/679)
• German EnWG (Energy Industry Act)
• EU Ecodesign Directive
• EU Code of Conduct on Data Centre Energy Efficiency

Key compliance measures:

• No personal data (PII) is collected or stored included such that may identify a
person from naming of accounts, digital identities & etc.

• Anonymization and data minimization principles are applied.
• Logs and telemetry for regulated energy and carbon reporting are retained by

applicable guidelines.
• Immutable logs support audit trails and forensic requirements.

Example Diagram:

4.5.4 Data Integrity During Retention

To maintain the legal admissibility and operational utility of telemetry over time, integrity
must be enforced through:

• Hash chaining or checksum validation at the archival layer (e.g., for immutable
snapshots),

• Clock synchronization across telemetry-producing agents (NTP/NTS
enforcement),

• Tamper-evident metadata, such as automated origin tagging and time-
sequencing.

This is particularly relevant for CSRD or ISO 50001-aligned energy records, where
historical traceability may be audited several years post-ingestion.

Compliance-Centric Design Goals

Compliance
Requirement Lifecycle Design Feature

CSRD/ESRS monthly
disclosures

Monthly rollup snapshots of PUE, ERF, Scope 2
telemetry, with CSV export capability

Article 12 EED (annual
uploads to EU database)

Year-based data extraction schemas from the data lake
(e.g., Kibana Saved Queries or API-bound Dashboards)

Climate Neutral Pact KPIs Rolling year-on-year dashboards with built-in deltas and
threshold alarms for self-audit use

EU Taxonomy DNSH proof Tag historical telemetry by environmental objective and
extract as evidence for financing documentation

4.6 Enterprise Integration Expectations
The observability platform is designed and intended to integrate with broader enterprise
ecosystems, ensuring data consistency, insights, and alignment with operational
workflows across internal tools and external service platforms.

This section outlines key integration points, governance responsibilities, and expected
data flows across systems such as CMDB, Ticketing, observability layer + correlation
engine, and optional enterprise observability platforms.

4.6.1 Integration Overview

The platform both produces and consumes telemetry, CMDB, and alert data, aiding
timely decisions and long-term strategic analysis.

System Purpose Integration Method

CMDB
Asset registry, location
tagging, config state,
visualization of reports

Bi-directional sync (via API /
webhooks)

Ticketing Platform Incident management,
alert correlation, audit REST API integration Data Lake

Data Lake
Data lake for
enrichment, analytics,
history

Central ingestion e.g.
OpenTelemetry receiver or
dedicated API

Observability layer and
correlation engine

Company-wide
observability analytics
backbone

API-based forwarding from Data
Lake

Alerting Framework
Rule-based alert
correlation &
suppression

Connected through
OpenTelemetry + metadata
tagging

Optional SIEMs Security analytics and
event management Log forwarding with tag filters

4.6.2 CMDB - Source of Truth Alignment

CMDB should provide:

• Inventory Management: Data of racks, PDUs, Embedded Monitoring Units,
breakers, outlets, sensors, and logical grouping.

• Configuration Metadata: Tracks firmware, desired state, vendor mappings, and
lifecycle data.

• Desired State Management: tags and metadata are used for additional
definition of alert thresholds, polling configurations, and compliance rules.

Visualization Plugin Integration:

• Supports floorplan visualization, heatmaps, and topology mapping via integrated
plugins.

• Enables operations teams to graphically navigate the data center environment,
quickly identify issues (e.g., overheating rack, power imbalance), and correlate
telemetry visually.

• Dashboards can reflect telemetry overlaid on physical layouts or rack elevations.

All telemetry collected is cross-referenced against CMDB:

• Device ID and location → used to anchor telemetry context
• CMDB-to-live mapping → enables drift detection
• Tagging and metadata → supports enriched alerting and ticket context
• By enriching telemetry with CMDB metadata and exposing spatial context, the

platform supports real-time, intuitive troubleshooting and planning workflows.

4.7 Governance and Change Control (non-technical)
An observability platform is only as effective as the operational policies and ownership
structures supporting it. To ensure maintainability, consistent data quality, and business
alignment, this section defines non-technical governance responsibilities across
stakeholders.

This includes control of thresholds, alert logic, versioning, and data consumption
standards.

4.7.1 Governance Scope

Governance covers three key domains:

• Configuration Control: Who defines thresholds, tags, alert logic, polling intervals,
etc.

• Platform Evolution: Who owns the lifecycle of dashboard updates, CMDB schema
extensions, and CI/CD changes.

• Operational Ownership: Who reacts to alerts, investigates data anomalies, and
tunes observability workflows.

4.7.2 RACI Matrix: Platform Ownership (example)

Activity /
Function

RunOps /
NOC

Infra
Architecture

Platform
Team Security

Infra
Engineering
(Cloud/DC)

Define alert
thresholds

(power, temp,
humidity)

R A C C I

Manage
SNMP/API polling

& intervals
C R A I C

CMDB schema
extensions I A R C C

Dashboard
versioning C R A I C

Ticketing
Platform

integration tuning
A I R I I

Credential
rotation

(SNMPv3, API
tokens)

I I C A R

Compliance
reporting data

definitions
C C I A I

Table 4: Legend: R = Responsible / A = Accountable / C = Consulted / I = Informed

4.7.3 Example Change Management Policy

Changes to observability configurations (e.g., thresholds, polling, data pipelines)
must follow documented change control procedures:

• Proposal Phase: Changes proposed via GitHub Pull Request or internal ticketing.
• Review Phase: At least two stakeholder teams must approve (e.g., Platform +

RunOps).
• Staging Validation: New configs tested in non-production data lake and CMDB

environments.
• Production Release: Via Helm or GitHub Actions, with change log updated.
• Rollback: Each change includes rollback procedure and validation window.

4.7.4 Operational Ownership by Platform Zone

Platform Zone Owning Team Change Cadence Example Artifacts

Data collectors Platform
Engineering

Weekly SNMP OID changes, new
polling targets

Data lake Observability
Platform Team

Bi-weekly New field mappings, tag
parsing rules

CMDB Infrastructure
Architects

Monthly New device types, rack
location updates

Alerting Platform Team
+ Ops

On demand Alert tuning, uptime views,
KPI visualizations

Ticketing
Workflows

RunOps Quarterly Alert suppression,
escalation chains

4.7.5 Configuration Drift & Change Automatic Detection Example

To detect unauthorized or accidental configuration changes:

• Asset Information and CMDB desired state is compared nightly to current
telemetry.

• Drift reports are auto generated and routed to owners.

Examples:

• Rack moved without CMDB update
• Device firmware mismatch
• Unexpected polling interval change
• Alerts are logged and tracked as potential compliance issues.

5 Understanding Composable Infrastructure

5.4 Overview
"Composable" represents a service-centric model where a wide range of resources are
rapidly reassigned to accommodate service components. It integrates software-defined
capabilities into hardware elements to streamline and automate administrative tasks
involved in deploying and managing disassembled infrastructure.

In brief, “Composable infrastructure is an information technology framework where the
physical resources are treated as services.”

5.4.1 Hardware Layer

The Hardware layer is the foundational components targeted components in this case
Embedded Monitoring Units, PDU’s, Outlets, Brakers, Phases, Temperature and
humidity sensors that form the basis of the infrastructure.

5.4.2 Composable Software Layer

The Composable software layer assists as an abstraction layer for the physical
components, arranging them into logical resource pools that can be accessed through
the API, SNMP or other data mechanisms. This software is equipped with
programmable, configurable, and self-correcting functionalities. It can autonomously
orchestrate the essential logical resources to meet specific requirements. It has the
capability to utilize templates that offer preconfigured setups tailored for specific use
cases. This layer relies heavily on software-defined control.

5.4.3 API, SNMP Layer

The API and SNMP play a crucial role by enabling access to the hardware resources
within the infrastructure. It acts as a consolidated interface for executing a wide range of
operations, encompassing tasks like reporting, alerting, searching, managing inventory,
provisioning, conducting updates, and performing diagnostics.

5.5 Application or End-User Usage Layer
The application layer refers to the topmost layer in the architecture, where end-user
applications or services interact with and utilize the underlying infrastructure and
resources.

5.6 Core Principles
The platform is built on several core principles that define its approach to data center
monitoring, observability, architecture and resource management. These principles help
to understand and implement the platform effectively.

Principle Name Description

Resource Pools

Infrastructure abstracts physical hardware components, such
as Embedded Monitoring Units, PDU’s, Sockets, Sensors,
breakers & etc., into resource pools. Resource pools are
established by aggregating these hardware resources, thereby
enabling their availability.

Software-Defined
Control

Infrastructure and platform are built upon software-defined
technologies for its control and management. The management
and availability of resources controlled by software rather than
being tightly bound to specific hardware configurations.

Dynamic Allocation
Resources can be allocated dynamically to different target
objects or devices as needed, and these allocations can be
adjusted in real-time.

API-Driven
Management

This solution aims to provide APIs (Application Programming
Interfaces) that allow administrators to programmatically
manage target devices, addressing and data resources.

API-driven management enables automation, orchestration,
and seamless integration with other IT management systems.

Resource Isolation

Composable infrastructure enables resource isolation, ensuring
that each workload or application has dedicated resources for
performance, security, and compliance purposes. Resource
isolation is achieved through software-defined resource
allocation.

Elasticity and
Scalability

Composable infrastructure is designed to be elastic and
scalable, allowing organizations to easily scale up or down in
response to changing demands. This scalability is achieved by
adding or removing resources from the available pools.

Automation and
Orchestration

Automation is a central principle of composable infrastructure,
enabling the execution of predefined tasks and workflows
without manual intervention.

Orchestration coordinates the allocation and configuration of
resources to meet specific requirements.

Resource Efficiency

Aims to optimize resource utilization, minimizing waste and
underutilization. By efficiently allocating resources so the
organizations can reduce both capital and operational costs.

Flexibility and
Adaptability

Flexibility and adaptability are key principles, ensuring that the
infrastructure can respond to changing business conditions and
technology requirements.

Interoperability

Ensures interoperability, enabling different systems, devices,
and applications to work together seamlessly. This principle
supports the integration of various technologies and platforms,
allowing for cohesive operation and communication across
diverse environments. This is achieved using open standards,
protocols, and APIs, enabling integration across heterogeneous
environments and fostering a cohesive ecosystem.

6. Implementation Strategy & Practical Considerations
for Real-World Adoption

The successful implementation of a data center observability platform requires more
than selecting technical components or deploying agents. It is a cross-disciplinary
endeavor involving infrastructure engineering, operations management, regulatory
compliance, platform governance, and strategic business alignment. Organizations
differ in maturity, architecture, and constraints - hence, a single prescriptive approach is
neither feasible nor desirable.

This section provides a practical, adaptable framework that enables organizations,
whether operating a hyperscale data center or a hybrid co-location site, to craft their
own observability roadmap. The guidance herein is not tool-specific, but concept-
driven, combining technical realism, organizational foresight, and regulatory awareness.

Rather than asking "What tool should I deploy first?", we encourage stakeholders to
ask:

- What decisions must be observable to improve outcomes?
- Which teams rely on telemetry for critical processes?
- How to connect data collection with governance, compliance, and strategic

impact?

We address a broad spectrum of roles:

- Operators will need guidance on integrating telemetry with timely workflows.
- Architects will need information on how to design resilient, layered observability

stacks.
- Compliance teams will need aid on how metrics map to regulatory obligations.
- Executives will need insight into how observability supports business continuity

and ESG targets.

The subsections below follow a maturity-aware progression, designed to help any
organization assess its context, map capabilities, structure architecture, and ensure
long-term alignment between systems, users, and regulatory demands.

6.1 Organizational Readiness – Contextual definition
Before deploying any observability platform, organizations must prepare beyond just
infrastructure and software readiness. The success of observability depends on whether
the organization is structurally and strategically aligned to use it effectively. This means
clarifying who owns what, what compliance obligations exist, and how observability
insights will influence real decisions.

This section introduces a foundational lens to assess readiness. Rather than rushing
into tool selection or protocol integration, stakeholders should examine internal
alignment across technical, organizational, and compliance domains.

Design Insight: An observability platform implemented without organizational
readiness risks becoming an underutilized data silo. Without clarity on thresholds, roles,
and escalation paths, alerts may be ignored, and telemetry may never reach the right
decision-makers.

Framing Questions by Dimension

The table below offers a guided peek to facilitate cross-functional discussions. Each
dimension uncovers crucial insights that determine whether observability will be useful
or merely visual.

Dimension Guiding Questions Why It Matters

Organizational
Who owns the racks, PDUs, and
EMUs? Who approves observability
changes?

Clarifies accountability and
change control boundaries.

Technical
What telemetry exists today? Which
protocols (e.g., SNMP, Redfish) are
supported?

Informs tool compatibility
and defines the potential
data pipeline.

Process
Are there defined alert thresholds? Is
there a CMDB integration or an
incident response process?

Ensures observability aligns
with operational workflows.

Compliance
What regulations apply (e.g., EED,
CSRD)? What metrics must be
tracked or reported?

Enables early planning for
regulatory alignment and
audit readiness.

Data Maturity
Are there consistent naming
conventions? Is the asset metadata
clean, current, and structured?

Supports accurate alerting,
filtering, and long-term
automation.

End Users
What do different user groups (e.g.,
operations, planning, compliance,
executives) expect to see or act on?

Ensure dashboards and
alerts are purpose-built, not
generic.

Example: Multi-Stakeholder Kickoff in a Co-Located Environment.

In a large-scale co-located facility shared by multiple clients, observability readiness
begins with determining who owns what equipment and telemetry rights. If the hosting
provider controls the infrastructure but tenants demand energy visibility, the
observability platform must be positioned as a shared service with clear data contracts.

Organizational Need: Align co-location operator and tenant expectations.

Compliance Need: EnWG in Germany mandates transparency for facilities ≥ 500 kW.

Process Alignment: Establish shared incident flows and visibility scopes for tenant
dashboards.

Maturity Reflection

Even sophisticated organizations may have gaps.

For example:

- Is telemetry polled but unused due to lack of thresholds?
- Do security teams have visibility into telemetry access control?
- Does procurement know which assets can produce observability data?

Operational Implication: Readiness assessments often uncover unowned telemetry
devices that produce useful metrics but are not mapped to any team’s responsibility.
Making these relationships explicit is a critical precondition for platform sustainability.

6.2 Implementation Planning Framework
Data center observability cannot be treated as a plug-and-play deployment. It is a
strategic capability that matures over time through structured planning, iterative
deployment, and continuous refinement.

This section introduces a four-phase implementation framework designed to help
stakeholders translate strategy into actionable delivery while accommodating
site-specific realities, tooling constraints, and evolving regulatory demands.

The framework is flexible enough to suit diverse organizational profiles—from a single-
edge site to multi-region enterprise networks—yet anchored in universal
implementation disciplines such as governance, telemetry alignment, and value
mapping.

We propose organizing the implementation into four tightly interlinked phases. These are
not simply sequential steps, but interdependent cycles that may iterate as business
needs and technical capabilities evolve.

Phase Objective

1. Contextual
Definition

Clarify the intent, operational boundaries, and business drivers of
the observability initiative.

2. Capability
Assessment

Map the current-state telemetry environment, available protocols,
and data quality baselines.

3. Platform
Architecture

Define the logical structure, governance model, data flows, and
integration touchpoints.

4. Operational
Integration

Embed observability into daily operations, compliance frameworks,
and long-term planning cycles.

Each phase is elaborated in more detail below with corresponding examples and
success criteria.

6.2.1 Phase 1 Contextual Definition

Goal: Define the “Why,” “What,” and “Who”

The first phase addresses intentionality: What problems are we solving? Who benefits?
What outcomes define success?

Key Activities:

- Use Case Mapping: Examples include power monitoring at the socket level,
ambient temperature alerts, or firmware drift detection.

- Stakeholder Alignment: Identify data consumers and sponsors—data center
ops, cloud platform teams, RunOps/NOC, sustainability, finance.

- Driver Analysis: Define the legal, operational, or strategic reasons behind the
platform. These could include EU regulatory compliance, internal audit
mandates, or uptime SLAs.

Practical Tip: Use a stakeholder canvas to record expectations, risks, and
dependencies for each stakeholder group. This prevents technical solutions from
outpacing organizational needs.

Example: In a newly built data center intended to serve regulated industries, the primary
business driver may be auditability of temperature and energy metrics. Thus,
observability success is measured by compliance report generation, not only uptime
visualization.

6.2.2 Phase 2: Capability Assessment

Goal: Understand Your Starting Point

Before architecture decisions, understand what telemetry already exists, its reliability,
and how to integrate it.

This phase evaluates the technical landscape to determine telemetry potential and
integration feasibility.

It includes:

• Asset Taxonomy: Classification of PDUs, EMUs, sensors, devices and racks
based on telemetry exposure (SNMP v3, Redfish, etc.).

• Protocol Compatibility Mapping: Identification of supported communication
protocols and data export mechanisms.

• Data Availability and Quality: Review of existing naming conventions, time-
stamp policies, and data completeness.

Example: In a multi-vendor environment with legacy PDUs supporting only SNMP v2c, a
transformation plan may involve standardizing telemetry through intermediate
collectors with normalization logic.

6.2.3 Phase 3: Platform Architecture

Goal: Define the Engine Behind Observability

This phase lays the foundation of how telemetry is ingested, transformed, stored,
enriched, visualized, and acted upon.

The observability stack is logically structured to enable modularity, scalability, and
traceability.

Key considerations include:

• Data Ingestion Design: Use of collectors (e.g., Telegraf, OpenTelemetry) to
receive telemetry, normalized via schema enforcement.

• Contextual Enrichment: Tagging of data with asset metadata (location, vendor,
lifecycle stage) from an authoritative CMDB.

• Data Tiering: Categorizing telemetry into operational, compliance-critical, and
archival layers.

• Governance Principles: Ownership of thresholds, alert rules, and lifecycle
policies across domains.

Best Practice: The architecture should separate telemetry tiers (e.g., operational alerts
vs. sustainability reports) and use metadata to drive filtering and alert scoping.

Example: For operations, architectural uniformity is maintained via GitOps-based
deployment, with localization handled through metadata-driven dashboards and region
& system-specific alert profiles.

6.2.4 Phase 4: Operational Integration

Goal: Make Observability Actionable and Sustainable

No observability platform is complete until it is used by actual stakeholders and
supports real-world decisions.

The final phase ensures the observability platform is embedded in workflows and
contributes to business continuity, strategic planning, and regulatory readiness.

Key Practices include:

- Alert Management: Integration with incident management systems (e.g.,
Ticketing), including role-based escalation paths.

- Drift Detection: Periodic comparison of real-time telemetry with desired state
declarations in the CMDB.

- KPI Reporting: Automated export of PUE, renewable share, energy footprint per
zone, mapped to EU regulatory requirements.

- Audit Support: Immutable logs, version-controlled configurations, and change-
tracking systems enable compliance with ISO 27001, NIS2, and CSRD.

The implementation framework is not about technology first - it's about context,
alignment, and structured deployment. Without a shared purpose and maturity-aware
approach, observability risks becoming fragmented or underused.

6.3 Implementation Scenarios
Not all organizations begin their observability journey from the same starting point.
Infrastructure age, protocol diversity, organizational structure, regulatory demands, and
internal capabilities all shape what is possible, and what is pragmatic.

This section presents two perspectives on implementation scenarios:

Maturity Progression (“Crawl–Walk–Run–Fly”): How organizations typically evolve
over time in observability sophistication.

Situational Profiles: Representative deployment conditions (e.g., legacy, greenfield,
sustainability-driven) and how observability must adapt accordingly.

By structuring implementation scenarios in this dual view, we help organizations
benchmark where they are and plan realistic next steps.

6.3.1Maturity Scenarios – How to Grow Over Time

Stage Telemetry Scope Process Maturity Business Impact

Crawl
PDU and temperature
data from a single site,
basic SNMP polling

Manual threshold
checks, no CMDB
linkage

Partial visibility, limited
response automation,
frequent alert fatigue

Walk
Socket-level and EMU
telemetry across
multiple sites

Initial CMDB
integration, static alert
rules, basic tiering

Improved regional
oversight, SLA
monitoring, reduced
noise

Run End-to-end telemetry:
PDUs, racks, sensors,

Role-based access,
CI/CD pipelines,
structured escalation

Predictive maintenance,
SLA & ESG conformance,
continuous improvement

firmware, configuration
drift detection

Fly

Cross-site analytics
with ML, timely signal
enrichment, full
compliance
instrumentation

GitOps observability,
closed-loop
automation, regulation-
aware dashboards

Enterprise-wide energy
optimization, adaptive
compliance, business-
aligned observability

NOTE: Each stage introduces new system dependencies (e.g., data enrichment at
“Walk” requires CMDB reliability), and new stakeholders (e.g., ESG officers become
relevant at “Run”). The maturity journey is as much about governance and culture as it is
about data pipelines.

6.3.2 Implementation Conditions – Real-World Scenarios

These scenario profiles reflect real-world deployment challenges and constraints,
helping clients frame observability in a practical, context-sensitive way.

Scenario Characteristics Observability Focus

Legacy Co-Location
Environment

Older hardware, limited
SNMPv2 support, manually
maintained asset records

Establish a minimum
viable telemetry, normalize
inputs, enable socket-level
alerting with collector
throttling

Greenfield Deployment
(Edge or Cloud)

Brand-new build, Redfish
and OpenTelemetry native,
KPI-driven design

Implement full
observability stack from
day one, enforce
structured tagging, track
renewable energy input

Multi-Tenant DC with SLA
Commitments

Shared infrastructure,
customer-specific SLAs,
carbon tracking required

Tenant-tagged telemetry
streams, SLA-aware alerts,
customer-facing
dashboards, traceable KPI
histories

Sustainability Compliance
Site

Subject to EU taxonomy,
water, cooling, and
renewable targets

Integrate facility data,
enforce ESG metric
capture, link drift detection
with sustainability controls

Clarification:

- Legacy scenarios often require architectural compromises (e.g., less frequent
polling, read-only integrations).

- Greenfield builds offer ideal conditions for reference architecture deployment
but also carry a blank-sheet burden - no legacy constraints, but also no
institutional experience or historical data.

- Multi-tenant environments introduce the challenge of data segmentation,
ensuring observability is actionable and compliant for each tenant without
risking leakage or misattribution.

- Sustainability sites push observability beyond IT into facility, energy, and ESG
domains, demanding interoperability with non-standard systems (e.g., chillers,
water meters, or power purchase agreements).

Best Practice: Organizations operating under multiple conditions (e.g., a mix of legacy
and edge sites) should define site-level observability tiers. Each site is then monitored
according to its own capabilities and strategic value, avoiding one-size-fits-all
deployments.

6.4 Observability Success Drivers
An observability platform’s value is not defined merely by its tooling or data ingestion
rates. True success is measured by its ability to align with organizational goals,
regulatory demands, and operational realities. This section highlights the underlying
drivers that determine whether observability efforts scale from pilot projects to
institutionalized platforms.

These drivers are not “features”, they are architectural and governance enablers that
define the sustainability, relevance, and impact of observability across the enterprise.

The effectiveness of implementation is driven by several organizational and structural
success drivers:

Driver Why It Matters How to Implement

Telemetry–CMDB
Convergence

Context-aware insights,
root cause analysis

Bi-directional sync with
CMDB, enriched alerts

Granularity by Purpose Cost-efficient and
actionable monitoring

Align polling intervals and
retention per use case

Lifecycle Governance Compliance, auditability,
clarity

Define policies for data
tiers, access roles, and
version control

Stakeholder Visibility Adoption and operational
value

Role-specific dashboards
and reporting outputs

Data Health Monitoring Integrity, trust, quality
assurance

Automated anomaly
detection on telemetry
pipelines

6.4.1 Telemetry-CMDB Convergence

Aligning live data with asset metadata ensures consistency, drift detection, and
accurate alerting. Observability becomes fragile when telemetry exists without
metadata context.

Example: Socket-level power readings are useful, but without knowing which rack,
which team, or which environment the data belongs to (via the CMDB), the insight is
incomplete.

Best Practice:

• Ensure every telemetry stream is mapped to a canonical asset in the CMDB
• Enable bi-directional sync so that configuration changes (e.g., PDU swap) update

telemetry logic automatically.
• Use CMDB tags (e.g., lifecycle stage, business unit, vendor) to enrich alerts and

support role-specific dashboards.

6.4.2 Granularity by Purpose

Tailoring data collection depth to the use case (e.g., rack-level for capacity vs. zone-level
for compliance). Not all metrics require the same level of precision or frequency.

Example: A rack-level temperature reading might suffice for compliance, but socket-
level load data is necessary for incident prevention.

Consideration:

• Granular telemetry (e.g., socket load every 5 seconds) can be valuable, but
expensive to store and analyze.

Align granularity and retention policies with the purpose:

• Regulatory → summarized and archived
• Operational → real-time and short retention
• Predictive → enriched with tags, used for training models

6.4.3 Lifecycle Governance

Retention, archival, and access policies ensure observability aligns with regulatory and
operational norms. A successful observability platform has clear policies for:

• Retention: How long is the telemetry kept?
• Archiving: Which data is rolled up? Which data is deleted?

• Access: Who can view or modify dashboards? Who owns the configuration?
• Versioning: Are dashboard and schema changes tracked?

NOTE: This is especially critical in regulated environments, where reporting periods and
audit trails are mandatory. Many organizations fail audits not because they lack the data,
but because they cannot prove its completeness or origin.

6.4.4 Ease of Use

Role-specific dashboards and controls support both technical users and executive
sponsors. A technical sound platform is irrelevant if its output is unreadable to key
stakeholders.

Success Factor:

• Tailor dashboards, alerts, and reports to audience needs:
• DC Ops → root cause analysis
• Procurement → utilization reports
• Sustainability → CO₂ per rack
• Executives → compliance and ROI summaries

Good observability is not about showing everything, it is about showing the right thing to
the right person in the right format.

EXAMPLE: A capacity planner might want phase balance per row over time, while a
sustainability officer needs to aggregate kWh per building per month with renewable
split.

6.4.5 Trust and Data Health Monitoring

Even the best observability platform must observe itself.

Critical Practices:

• Monitor data gaps, unexpected value patterns, and telemetry volume anomalies.
• Alert on schema violations (e.g., missing timestamps, invalid tags).
• Track pipeline drift, where enrichment logic may silently fail due to upstream

changes.

This is the foundation of trustable observability - systems where telemetry is not just
ingested, but audited and verifiable.

6.5 Interoperability and Compatibility Considerations
Interoperability is not just a technical challenge - it is a business enabler. As data
centers evolve into federated, compliance-driven, and customer-facing ecosystems,
ensuring compatibility across heterogeneous systems becomes foundational to
platform sustainability and auditability.

Modern data center environments are characterized by their diversity: multiple vendors,
evolving firmware baselines, protocol mismatches, and coexistence of legacy and next-
generation equipment. An observability platform must therefore not only operate across
this heterogeneity, but it must also bridge it intelligently.

In large-scale, multi-vendor, or hybrid data center environments, interoperability and
compatibility are not nice-to-haves they are essential for platform viability.

Observability needs to:

• Diverse protocols and data formats
• Varying firmware maturity and telemetry granularity
• Mixed ownership models (e.g., co-location, cloud edge, internal IT)

This section outlines how to ensure technical interoperability while minimizing
fragmentation, avoiding data silos, and achieving coherent visibility across
heterogeneous infrastructure.

6.5.1 Protocol Interoperability

Data centers contain devices with vastly different capabilities from 10-year-old
SNMPv2c PDUs to next-gen servers supporting Redfish and OpenTelemetry.

While modern architectures may favor Redfish or OpenTelemetry, SNMP remains
dominant in legacy and co-location environments. This duality requires observability
platforms to be “bilingual” - capable of ingesting structured, modern APIs while
gracefully handling older, less secure formats.

Telemetry data is typically sourced from devices supporting a mix of:

SNMP (v2c, v3): Ubiquitous but varies in implementation and security (v3 preferred for
encryption/authentication).

Redfish API (REST-based): Common in newer hardware for power/thermal telemetry.

OpenTelemetry: Typically used for application-level metrics but increasingly relevant
for infrastructure observability.

Custom REST APIs: Proprietary interfaces exposed by vendors or co-location providers.

Syslog & SNMP Traps: Event-driven telemetry requiring near-real-time ingestion logic.

Best Practice: Implement an abstraction layer in the ingestion pipeline that
standardizes input (e.g., Telegraf → Logstash → Unified Schema) to decouple
downstream systems from protocol-specific behavior.

6.5.2 Semantic Compatibility & Data Normalization

Protocol support alone does not guarantee interoperability. Semantic mismatches,
where identical metrics are labeled, formatted, or timestamped differently, are a leading

cause of faulty alerts, data duplication, and operator confusion. This subsection
illustrates how to bring coherence across a fragmented telemetry landscape.

Mismatch Type Example Mitigation Strategy

Unit inconsistency Power reported in W vs. kW Normalize during ingestion
using a predefined
transformation dictionary

Inconsistent naming pdu_socket_01_kwh vs
Outlet03_Consumption

Enforce naming schema

Timestamp granularity Millisecond precision in
one device, 30s polling in
another

Align to a reference clock.
assign collection
timestamp if native
timestamp is missing

Firmware metric drift New firmware exposes
different OID trees or
changes field semantics

Maintain a compatibility
registry by device model +
firmware in CMDB

6.5.3 CMDB Integration for Source Consistency

A mature CMDB is not just a passive inventory - it becomes an active compatibility
broker.

CMDB Responsibilities:

• Store metadata such as:
o Supported telemetry protocols
o Device model and firmware version
o Ownership, SLA level, and business-criticality

• Track configuration drift: actual vs. expected telemetry behaviors
• Define which devices can and should be polled for specific metrics

Example: Before enabling phase load monitoring, the platform checks in CMDB whether
the device:

• Supports SNMP v3
• Has phase metrics enabled in the current firmware
• Belongs to a site with advanced analytics enabled

This ensures intentional monitoring, not blind data scraping.

Real-World example: In one software-operated site, CMDB was extended to include
firmware compatibility metadata. This enabled ingestion pipelines to auto-select polling

templates based on device model, reducing false alerts by 38% and speeding up
onboarding of new devices by 62%.

6.5.4 Interoperability with Enterprise Systems

Observability platforms are not islands. They must interoperate with enterprise systems
for incident management, compliance, and analytics.

Example Integration points:

System Function Integration Method

Alerting Incident & change
management

REST API, CMDB sync,
ticketing

GRC Platforms Governance, risk,
compliance

Reporting pipeline or
export

Observability layer and
correlation engine Data lakes, trend analysis Logstash → Elasticsearch

forwarding

CI/CD Observability-as-code GitHub Actions, Helm,
Terraform

SIEM Security incident detection Syslog forwarding, log
tagging

Data Visualization (e.g.,
Kibana)

Dashboards for
stakeholders

Elasticsearch sync,
metadata tagging

Regulatory Relevance: EU reporting regulations (e.g., EED, CSRD) increasingly
mandate interoperability - e.g., the ability to export metrics in standardized formats
(JSON, CSV, XML) to government databases or auditors.

6.5.5 Legacy and Vendor-Locked Devices

In real-world environments, total compatibility is rare. A platform must offer graceful
degradation:

• For non-instrumented racks: Use metadata tagging only
• For legacy SNMPv2c: Poll via gateway collectors with throttled frequency
• For proprietary systems: Request vendor integration plugins, or treat as passive

data sources

Strategic Guidance: Maintain a "telemetry tier" classification:

Tier 1: Fully instrumented with real-time polling and event support

Tier 2: Partially instrumented or legacy-polled with relaxed alerting

Tier 3: Inventory-only, requiring manual data entry or offline updates

Summary of Compatibility Challenges & Mitigations

Challenge Mitigation

Protocol mismatch Collector abstraction layer, protocol
tagging

Semantic drift Normalization schema, CMDB
enforcement

Firmware inconsistency Compatibility matrix, ingestion validation

Legacy devices Tiered telemetry model, passive tagging

Regulatory exports Format standardization, audit logging

As industry moves toward unified observability fabric standards (e.g., OpenConfig,
DMTF Redfish extensions), platform architecture should anticipate convergence.
Investing in modular, schema-aware ingestion and CMDB-driven normalization will not
only ease today’s interoperability issues but also position the platform for adaptability
as standards evolve.

6.6 Practical Adoption Tips by Stakeholder Type
The success of an observability platform is not solely contingent upon its technical
sophistication. Equally critical is the diverse roles that engage with, govern, and depend
on the platform outputs. From data center operators to executive leadership,
stakeholders have distinct concerns, expectations, and success criteria.

This section provides a structured overview of how different stakeholder groups can
interpret, adopt, and benefit from observability - highlighting practical considerations,
decision factors, and real-world enablers. Rather than presenting generic best
practices, we translate stakeholder needs into implementation touchpoints that
enhance relevance, foster alignment, and ensure long-term adoption.

6.6.1 Data Center Operations Teams

For facility engineers and on-site operations staff, observability must move beyond
passive monitoring and become a tool for proactive management.

Their primary interests often include:

• Fault detection and resolution (e.g., thermal hotspots, circuit imbalances)
• Capacity and load forecasting

• Compliance with operational SLAs (e.g., temperature, uptime, power safety
thresholds)

Operational Consideration: Operators require telemetry that is both granular and
actionable. Socket-level monitoring is valuable only when paired with intuitive
dashboards, actionable alert thresholds, and clear escalation paths.

Adoption Enabler: Co-locate observability dashboards, integrate alert flows into
NOC/RunOps workflows, and avoid data overload by filtering to role-specific signals
(e.g., only alerts triggered in the operator site zone).

Example: In one regional hub, timely energy telemetry helped an operator detect that
redundant power strips were being underutilized. Through minor rack layout changes,
they achieved 8% better load balancing, reducing thermal hotspots and risk of breaker
trips.

6.6.2 Platform and Infrastructure Architects: Designing for Modularity and
Scalability

Infrastructure architects must ensure that observability stacks are modular,
maintainable, and adaptable across heterogeneous environments.

Their focus is strategic and structural:

• Integration patterns (e.g., GitOps, CI/CD observability-as-code)
• Modular component selection (e.g., choosing Telegraf over custom scripts)
• System-level consistency across sites and platforms

Architectural Concern: Observability solutions that are hardcoded to local
configurations or lack clear modularity quickly become technical debt. Architects must
define common schemas, telemetry pipelines, and governance layers to avoid
fragmentation.

Adoption Enabler: Provide reference implementations, validate platform components
via architecture review, and ensure observability aligns with existing DevOps and
platform operations frameworks.

Example: In a distributed setup spanning co-location and edge data centers, the
architect enforced a shared metadata taxonomy (via CMDB) to ensure that all telemetry
adhered to a consistent format. This unlocked cross-site analytics and reduced
integration issues across observability layers.

6.6.3 Compliance and Sustainability Officers: Verifiability, Traceability, and
Audit-Readiness

For compliance stakeholders, observability is not just a technical capability - it is a
regulatory instrument. Their primary interest is proving that operations adhere to legal

and environmental standards, such as the European Energy Efficiency Directive (EED),
Corporate Sustainability Reporting Directive (CSRD), or local energy codes.

Compliance Challenge: Raw telemetry alone is insufficient for audits. Data must be
time-stamped, normalized, and traceable back to physical infrastructure components
and operating conditions.

Adoption Enabler: Integrate observability pipelines with GRC systems and data export
workflows. Use version-controlled dashboards for regulatory KPIs (e.g., PUE, renewable
energy share). Establish clear data retention policies and immutable logs aligned with
audit timelines.

Example: At a sustainability-driven site in the EU, automated telemetry from PDUs and
EMUs was combined with facility sensor data to generate monthly Scope 2 emissions
reports, directly fulfilling CSRD requirements for energy disclosure.

6.6.4 Procurement and Asset Management: Lifecycle Intelligence and
Capacity Planning

Procurement teams benefit from observability through better lifecycle planning and cost
efficiency. Knowing which racks are overprovisioned, underutilized, or aging helps
inform purchasing decisions and contract renegotiations with co-location providers.

Procurement Insight: Telemetry can be used to correlate usage patterns with asset
lifespans, identify redundant equipment, and optimize refresh cycles.

Adoption Enabler: Provide procurement with tailored dashboards (e.g., average power
draw vs. rated capacity per vendor) and link telemetry data with asset inventory systems
to enable financial forecasting and SLA optimization.

Example: By analyzing load distribution across PDUs, one enterprise discovered
consistent underutilization of a high-capacity rack zone. This insight enabled them to
downscale their lease.

6.6.5 Executive Leadership: Strategic Alignment and ESG Impact

Executives are not typically interested in raw telemetry - but they are deeply invested in
the business impact of observability.

This includes:

• Risk mitigation through early failure detection
• ESG reporting credibility
• Strategic facility expansion decisions

Leadership Focus: Observability must communicate high-level narratives: “Are we
compliant?”, “Are we efficient?”, “Are we at risk?”

Adoption Enabler: Develop executive-level dashboards with quarterly trends, predictive
forecasts (e.g., PUE projections), and regulatory alignment indicators. Link observability
metrics to ROI (e.g., savings from deferred expansion, energy efficiency gains).

Example: In a quarterly board meeting, telemetry insights supported a decision to defer
data center expansion by showcasing how improved rack consolidation extended
capacity greatly.

6.7 Lifecycle Sustainability and Long-Term Maintainability
Establishing an observability platform is not merely a technical milestone - it is the
initiation of a governance lifecycle. Once deployed, the platform must remain
adaptable, interpretable, and actionable in the face of organizational change,
infrastructure evolution, regulatory updates, and shifting stakeholder priorities.

This section outlines the major categories of sustainability risks and provides a forward-
looking framework to mitigate long-term degradation in observability platform relevance,
performance, and trustworthiness.

6.7.1 Understanding Sustainability in Observability Context

Sustainability in observability refers not only to environmental considerations, such as
minimizing storage and computing waste, but also to the organizational, procedural, and
epistemic longevity of the platform.

Key questions arise:

• Will the system still make sense when key personnel depart?
• Will telemetry continue to align with business needs as infrastructure evolves?
• Will dashboards and alerting policies remain valid under new regulatory regimes?

These questions frame observability as a dynamic system of knowledge, not just a static
monitoring toolkit. Like any socio-technical system, observability requires active
stewardship to remain resilient, interpretable, and valuable.

6.7.2 Key Categories of Sustainability Risk

Sustainability risks fall into six major domains, each with cascading operational
implications:

Risk Domain Description Typical Manifestation

Telemetry Drift

Device updates, firmware
changes, or topology
changes silently alter
telemetry

Values shift or disappear,
dashboards become
outdated

Semantic Decay
Misalignment between
data meaning and
stakeholder interpretation

Dashboards are misread;
alerts are misunderstood

Governance Gaps
No clear ownership of
thresholds, policies, or
platform evolution

Alert noise increases,
platform becomes siloed

Tooling Fragmentation
Parallel tools emerge with
uncoordinated scopes or
duplication

Shadow monitoring
solutions develop, wasted
resources

Regulatory Misalignment
Legal frameworks evolve
(e.g., CSRD, EED) but
telemetry stays static

Non-compliance, reporting
failures

User Disengagement
Stakeholders stop trusting
or using observability
outputs

Underused systems,
reduced ROI, false sense
of security

6.7.3 A Sustainability Framework for Observability

To proactively manage these risks, we propose a Sustainability Framework that
integrates platform engineering with organizational learning and regulatory foresight.

It consists of five interlinked principles:

1. Temporal Validity of Telemetry

Challenge: Device output change over time due to firmware upgrades or hardware
replacements.

Mitigation: Implement a telemetry validation pipeline that cross-checks incoming data
against CMDB-logged expectations (e.g., OIDs, unit formats, update frequency).

2. Intent Preservation via Metadata

Challenge: Dashboards and alerts lose context if creators leave, or documentation is
lost.

Mitigation: Mandate metadata tagging for all observability assets (dashboards, alerts,
transforms), capturing "why" alongside "what." For example, a tag like {"compliance-
metric": "EED-AnnexVII-1"} ensures intent persists.

3. Embedded Governance Anchors

Challenge: Without ownership models, observability becomes fragmented.

Mitigation: Assign platform Product Owner (PO) role and domain-specific telemetry
stewards. Require quarterly reviews of alert thresholds, metric utility, and system
integration fidelity.

4. Regulatory Horizon Scanning

Challenge: Regulations change faster than platform updates.

Mitigation: Link GRC (Governance, Risk, Compliance) workflows with observability
design. Ensure dashboards are annotated with regulation-specific references (e.g.,
"CSRD-Scope3-CO2") to ease auditability.

5. Participatory Review Mechanisms

Challenge: Platforms drift if users are passive.

Mitigation: Introduce structured feedback loops (e.g., observability retrospectives,
design review boards). Create usage analytics to detect declining interaction and launch
targeted re-engagement.

6.7.4 Example: Sustainability Breakdown in a Multi-Site Data Center

In one enterprise deployment, a leading European data center operator experienced a
gradual erosion of observability value over 18 months. Initially laid for its socket-level
energy insights, the platform suffered from the following:

• Firmware upgrades invalidated 20% of SNMP-based metrics.
• No one noticed missing data for 7 weeks due to absent meta-alerting.
• New compliance rules (EU 2023/1791) required reporting formats unsupported

by the system.
• Stakeholders began exporting raw data to Excel for custom reporting, leading to

shadow systems.

A sustainability audit revealed that while telemetry ingestion was technically functional,
governance, documentation, and intent alignment had eroded. A recovery plan was
introduced involving metadata backfilling, CMDB validation automation, quarterly
governance councils, and integration of legal compliance roles into the observability
team.

6.7.5 Strategic Recommendations

To institutionalize sustainability, organizations should treat observability not as a
finished product but as a living capability.

Recommended practices include:

Adopt Lifecycle Audits: Every 6-12 months, assess telemetry integrity, alert fidelity,
stakeholder engagement, and regulatory alignment.

Define an Observability Constitution: A lightweight policy artifact describing
principles, thresholds for action, naming conventions, and governance roles.

Bake Sustainability into Procurement: Require vendors to document telemetry
support per firmware, including change policies and backward compatibility.

Formalize Change Notifications: Connect firmware updates or site topology changes
to alert platform stewards via CMDB triggers or ITSM workflows.

Long-term observability success depends less on initial tooling selection and more on
how well an organization governs, interprets, and adapts its telemetry ecosystem over
time. Without proactive lifecycle management, even the most advanced observability
stack will drift into obscurity, becoming a shelfware platform of latent potential. By
embedding governance, metadata clarity, and regulatory responsiveness into the
platform’s DNA, organizations ensure that observability becomes not just sustainable,
but indispensable.

6.8 Common Pitfalls and How to Avoid Them
While the implementation of a data center observability platform promises enhanced
transparency, resilience, and regulatory alignment, real-world deployments are
frequently derailed by predictable, yet preventable failures. These missteps span across
technical, organizational, procedural, and cultural domains. Understanding these
pitfalls not only strengthens project outcomes but also builds institutional resilience
against future disruptions.

This section categorizes some of the most common implementation errors, analyzes
their systemic roots, and provides structured mitigation approaches. It serves both as a
diagnostic tool for ongoing projects and as a proactive planning guide for new
observability initiatives.

6.8.1 Pitfall №1: Technology-First Thinking

Symptom: Stakeholders rush to deploy tools or protocols (e.g., SNMP polling or Redfish
APIs) without clearly understanding business drivers, end-user needs, or compliance
obligations.

Underlying Cause: A bias toward solutionism, if technology alone will deliver value,
irrespective of context.

Impact: Misaligned data streams, unused dashboards, alert fatigue, and poor
stakeholder adoption.

Mitigation Strategy:

• Conduct structured Contextual Definition workshops before choosing tools.

• Translate platform goals into observable business decisions (e.g., “Are we
exceeding PUE targets?”), not just technical metrics.

• Involve compliance and operational stakeholders during the design phase, not
just after deployment.

Academic Insight: Technology without governance becomes entropy. In complex
systems theory, emergent value arises not from individual nodes (tools), but from their
structured interrelation, an idea as per the ideas of sociotechnical systems engineering.

6.8.2 Pitfall №2: Over-Engineering in Immature Environments

Symptom: Teams attempt to deploy fully integrated, real-time observability stacks in
legacy or telemetry-poor environments.

Underlying Cause: Aspirational design that ignores current-state limitations - e.g.,
SNMPv2-only devices, no CMDB integration, fragmented ownership.

Impact: Technical debt accrues rapidly. Stakeholders lose trust as platform outputs do
not reflect operational realities.

Mitigation Strategy:

• Use a maturity-based rollout model (see §6.3.1 Crawl–Walk–Run–Fly).
• Build from minimum viable telemetry (MVT) upward: start with basic PDU polling

and alert normalization.
• Formalize a site capability map to match ambitions with reality.

Academic Insight: System maturity must be scaffolded. Drawing from capability
maturity models (e.g., CMMI), premature optimization is not only wasteful, but also
structurally unsustainable.

6.8.3 Pitfall №3: Ignoring Semantic Normalization

Symptom: Metrics are collected in incompatible formats, units, or naming conventions
across vendors and sites.

Underlying Cause: Absence of data modeling, lack of shared vocabulary, and no
enforced transformation logic.

Impact: Visualization errors, alerting mismatches, broken compliance reports.

Mitigation Strategy:

• Establish a semantic schema for telemetry fields (e.g., voltage_phase_avg,
power_draw_kw).

• Normalize during ingestion (e.g., Telegraf → Logstash) using a transformation
dictionary.

• Leverage CMDB as a schema validation engine.

Real-World Example: One organization failed to detect a power imbalance due to
inconsistent OID mappings across firmware versions. Once normalization logic was
introduced, the alert logic stabilized, and false positives dropped by 85%.

6.8.4 Pitfall №4: Siloed Ownership and Governance Drift

Symptom: No one "owns" the observability platform for post-deployment. Thresholds
are outdated, dashboards unmaintained, and alerts misrouted.

Underlying Cause: Observability is viewed as a project, not a living system requiring
ongoing governance.

Impact: Degradation of value, alert noise, compliance gaps, executive disengagement.

Mitigation Strategy:

• Establish long-term governance anchors (see §6.7.3), such as:
• A Platform Product Owner (PPO)
• Domain-specific telemetry stewards
• Quarterly governance review cycles
• Use a version-controlled observability repository (e.g., via Git) to track schema,

alert, and dashboard changes.

Academic Insight: From a systems governance perspective, unmaintained observability
is analogous to unpatched infrastructure: vulnerable to drift, decay, and organizational
amnesia.

6.8.5 Pitfall №5: Treating Observability as a Technical Island

Symptom: Observability is implemented in isolation, unintegrated with CMDB, ITSM
platforms, GRC systems, or ESG reporting workflows.

Underlying Cause: Lack of stakeholder alignment and architecture foresight.

Impact: Duplicated effort, fragmented insights, inability to prove compliance or trigger
operational actions.

Mitigation Strategy:

• Design for interoperability from the outset (see §6.5.4):
• Link to ticketing platform for incident workflows
• Forward metrics to ELK data Lake for compliance visualization
• Integrate with GRC tools for audit readiness

Document use-case-based system interdependencies (e.g., "power drift → alert → SNOW
ticket → mitigation → CMDB update").

Academic Insight: The value of observability is not in seeing but in acting. From a
cybernetic perspective, observability without actuation is only half a system.

6.8.6 Pitfall №6: Underestimating Change Management and Training

Symptom: Platform is technically functional but remains underutilized. Stakeholders
bypass it using spreadsheets or custom scripts.

Underlying Cause: Poor onboarding, lack of clarity, or fear of change.

Impact: Shadow systems, fragmented data, platform abandonment.

Mitigation Strategy:

• Provide persona-based onboarding: different roles receive dashboards, alerts,
and training tailored to their decisions and processes.

• Launch continuous engagement programs: Office hours, internal champions,
quarterly design jams.

Real-World Observation: In a hybrid cloud operator, dashboard usage increased 4x
after introducing role-specific landing pages and targeted walkthroughs using internal
micro-learnings.

6.8.7 Pitfall Awareness as a Strategic Advantage

Avoiding failure is not simply about foresight - it is about institutional learning. The
observability platform must evolve from being seen as a static deployment toward a
resilient, governable, and socially adopted capability. The pitfalls outlined here are not
isolated mistakes, they are systemic patterns. By recognizing them early and embedding
countermeasures into design, implementation, and operational practice, organizations
enhance not only their observability readiness but their overall digital resilience.

Figure: Maturity vs Risk Heatmap

6.9 Long-Term Sustainability & Continuous Improvement
Deploying a data center observability platform is the foundation of a sustainable
capability that must evolve alongside the organization’s infrastructure, regulatory
obligations, and strategic goals. This section explores how to design for long-term
relevance, avoid obsolescence, and institutionalize observability as a dynamic, value-
generating asset rather than a static technical deployment.

6.9.1 The Lifecycle of Observability Platforms

Sustainability in observability refers to the platform's capacity to remain accurate,
relevant, and actionable over time. Like infrastructure itself, observability systems
undergo phases:

• Initialization: Configuration of the minimal viable telemetry and data ingestion
infrastructure.

• Operationalization: Integration with workflows, dashboards, alerting, and
compliance reporting.

• Optimization: Refinement of telemetry granularity, data tagging, and
automation.

• Evolution: Adaptation to new protocols, new equipment, and evolving
stakeholder needs.

To sustain these phases, organizations must shift from “deployment mindset” to
observability governance.

This includes:

• Policy-based configuration management (e.g., via GitOps),
• Governed change control over thresholds, alerting logic, and naming

conventions.
• Continuous validation of telemetry quality, coverage, and latency.

Example: A telemetry field used in annual ESG reports should be version-controlled,
auditable, and tested for semantic stability across firmware updates. Failure to do so
risks non-compliance.

6.9.2 Governance and Stewardship Models

Sustainability is not possible without clear organizational ownership and distributed
stewardship. Observability systems that lack governance often suffer from drift,
duplication, or decay. Successful models embed stewardship at three levels:

Governance Level Responsibility Example Practice

Strategic Sponsor budget and
business value alignment

ESG board defines
reporting KPIs

Tactical
Enforce architectural
standards and evolution

Architecture Review Board
approves ingestion
schemas

Operational Maintain dashboards,
alerts, CMDB mappings

NOC engineers refine alert
thresholds quarterly

A common pitfall is the “abandoned platform” syndrome - where telemetry is collected
but never acted upon because ownership of alerts or metrics has not been assigned.

Best Practice: Implement a Telemetry Ownership Matrix, mapping each signal or KPI to
a business function and escalation path.

6.9.3 Feedback Loops and Telemetry Refinement

A sustainable platform incorporates mechanisms for continuous improvement through
structured feedback. Observability is not a “set-and-forget” tool it must learn from
experience.

Effective feedback loops include:

Post-incident analysis: Were alerts timely and actionable?

Data quality audits: Are there silent failures in collection pipelines?

Stakeholder reviews: Are dashboards still aligned with stakeholder needs?

Capacity planning exercises: Is telemetry guiding infrastructure growth or
underutilization?

Practical Tip: Use quarterly “observability reviews” as part of operational governance
boards, like budget or performance reviews to recalibrate thresholds, dashboards, or
coverage areas.

6.9.4 Obsolescence and Futureproofing

Long-term sustainability requires systems to be designed with graceful evolution in
mind.

Key strategies include:

Abstracted ingestion layers: Decouple data collection from analysis and storage to
support protocol evolution (e.g., shift from SNMP to Redfish).

Modular architecture: Ensure new telemetry sources or visualization layers can be
added without refactoring core logic.

Semantic versioning: Apply API-like discipline to metric formats, naming conventions,
and dashboard schema.

6.9.5 Metrics for Platform Sustainability

Just as observability enables organizations to monitor their environments, the
observability platform itself should be monitored and evaluated.

Suggested sustainability KPIs include:

Metric Description

Telemetry Coverage Ratio Percentage of racks, PDUs, and sensors
actively reporting

Alert Fatigue Index Ratio of alerts resolved vs. ignored or auto
closed

Compliance Coverage Score Degree of alignment with required
regulatory metrics (EED, CSRD, etc.)

Data Pipeline Health Average ingestion latency, packet drop
rate, schema adherence

Dashboard Utilization Frequency of access and updates by
defined stakeholder groups

These metrics should themselves be visualized as part of a “platform health dashboard”
that is reviewed quarterly.

I.e. – Fig :

This heatmap is visualizing the utilization frequency of various dashboard types by
different stakeholder groups. The values (from 1 to 5) indicate how often each group
engages with specific observability dashboards:

• Operations and Engineering show the highest usage of power monitoring tools.
• Sustainability and Compliance teams rely heavily on environmental monitoring

and compliance reports.
• Finance and Executives favor KPI dashboards and strategic insights.

Appendix A Use Cases
This appendix consolidates use cases and technical implementation requirements for
key areas of the observability infrastructure.

A.1 Configuration management for monitored devices
General guidelines:

- Ensure appropriate version & change control processes are implemented (as
outlined in Section 4.7)

- Store configuration in common CMDB system
o Keep CMDB entries up to date, ensuring it reflects appropriate physical

placement and connections
o Keep track of device level monitoring readiness e.g. in case of component

replacement or introducing new hardware to the system report if usual
monitoring configuration could not be applied (e.g. missing component /
device model mismatch)

- Use standardized configuration templates for all managed device types
- Ensure configuration drift control measures are in place

Configuration key items:

Device identification information

- System name (e.g. network hostname) - well known device identifiers used in
CMDB system

- Additional identification properties e.g. physical location information, ownership,
device type
o Applies also to the device modules / attached accessories e.g. environmental

sensors
- Network connection settings including supported IP protocols / Addressing / DNS

server usage
- Time & date configuration e.g. Network Time Protocol configuration
- Appropriate operating system patches or firmware version control

Security

- Allowed access protocols (for both configuration and monitoring), depending on
selected methods, e.g.
o Minimum security specification for HTTPS access methods for REST APIs /

Redfish endpoints
o Appropriate SNMP protocol settings like versions, communities, encryption

methods
- Authentication

o Local user accounts configuration / integration with centralized systems

o MFA configuration
- Authorization

o Role based access control configuration – separating “administrator” and
“monitoring” role

- Auditing
o Appling minimum security specification e.g. integration with SIEM tools

whenever possible
- Additional security hardening best practices

o Ensuring not used services/features/access methods are disabled e.g. TFTP
or Telnet servers

Monitoring

- Configure appropriate access methods to monitoring/telemetry data
- Configure desired monitoring features are enabled in device settings e.g.

environmental sensors data collection or outlet level data collection is turned on
- Configure appropriate alerting thresholds
- Configure alerting severity
- Ensure monitoring agent/collector settings are in sync with monitored device side

configuration e.g. appropriate addresses of SNMP Trap receivers / Redfish event
subscription addresses are used in device-level configuration

A.2 Power & environmental metrics visualization

General guidelines:

- Whenever possible use version-controlled visualization engine and follow
standard change control procedures

- When creating breakdowns or filters use appropriate set of tags to ensure right
metric representation, keeping in mind relationships between objects (e.g.,
breaker metrics for single PDU in given rack would be identified at least by tags:
host, hw.parent and hw.name/hw.id)

o This applies also for visualization of event data like error logs or SNMP trap
data

- Apply appropriate color-coding to indicate primary / secondary (backup) power
source (as indicated by appropriate resource tagging and/or taken from device
naming convention)

- When visualizing multiple metrics on single dashboard ensure color coding is
consistent for common set of tags

- Indicated threshold/classes/boundaries on graphs should use well-known
values, desirably taken from monitoring (e.g., device power limits) or CMDB
system (location specific limits, forecasted values)

Observability infrastructure dashboard

Provides an overview of monitoring infrastructure, providing information with
agent/collectors statuses, number of collected metrics, and error rates.

- Monitoring infrastructure errors view e.g., containing sync issues with CMDB
system, unhealthy instances

- Metric collection errors time chart, grouped by monitoring agent/collector
instance

- Collection error rate per monitored device
- If applicable – metrics analysis/persistence layer errors per instance of

agent/collector

Rack dashboard

Provides detailed view of a rack, providing information useful for day-to-day operations,
including the most detailed data from PDU units including phase power, outlets, and
breakers.

- Current device state, “at-glance” overview for active alerts, power devices &
their component statuses

- PDU (true) power (kilowatts) & apparent power in time chart view if possible
visual comparison with device rating limits and forecasted values.

- PDU hourly energy consumption in time chart view if possible visual
comparisons with forecasted values.

- Power Phase power (kilowatts) & apparent power (kilovolt-ampere) in time
chart view
PDU Breakers data breakdown (table) - side-by-side comparison with primary
& secondary (backup) feed including peak current, current rating

- PDU Outlets data breakdown (table) - side-by-side comparison with primary
& secondary (backup) feed including: braker relationship, peak true &
apparent power, peak current, outlet current rating

- Environmental sensor data:
Temperature & humidity time charts, breakdown over sensor location, with
ASHRAE recommendations indication (e.g. appropriate area coloring).

Datacenter room dashboard

Provide detailed view for datacenter rooms, to provide summarized PDU & rack data for
given physical location (usually sharing cooling and power sources).

- Power data summary for PDUs as time chart – visual comparison with
forecasted values

- Peak environmental sensor values, breakdown over rack & sensor location –
with room averages (“at-glance” overview for peak values for selected period)

Datacenter room heatmaps

Provide environmental sensor data visualization with related infrastructure (e.g., racks,
cages. hot/cold containment zones) including spatial information in 2D/3D view
(depending on availability of the data and integration with CMDB systems).
Gradient colors should reflect local SLA classes, e.g., using ASHRAE data center
thermal guidelines, starting with yellow when exceeding “recommended thresholds,
turning red when approaching “allowable” boundaries.

- Temperature gradient breakdowns depending on sensor location (front/rear
and/or bottom/middle/top)

- Humidity gradient breakdowns depending on sensor location (front/rear
and/or bottom/middle/top)

Appendix B: Software Bill of Materials (SBOM)
This appendix provides a comprehensive Software Bill of Materials (SBOM) for the open-
source components utilized within the Data Center Observability Platform (including
Aperio components), as defined by the blueprint. It ensures transparency, traceability,
and compliance with the sustainability and interoperability objectives outlined in this
blueprint.

Only open-source or open-standard components have been included to support
principles of modularity, openness, and composability, while minimizing vendor lock-in.

B.1 Methodology
• Implementing Apeiro Reference Architecture
• Utilizing components provided by Aperio management plane (Greenhouse)
• Identification of all foundational and integration platform elements.
• Validation of open-source licensing for each component.
• Mapping functional roles to logical architectural layers.
• Alignment with regulatory, operational, and sustainability drivers.

B.2 Component Overview

Component Function within
Architecture

Open-Source
License Notes

Kubernetes -
Gardener

Orchestration of
containerized
observability
services

Apache
License 2.0

Gardener extends to
native Kubernetes.
Apeiro cloud-edge layer
component

Greenhouse

Orchestration of
observability
components in
distributed
environment

Apache
License 2.0

Orchestration of
distributed Kubernetes
infrastructure.
Apeiro management
plane component

OpenTelemetry
Collector

Aggregation and
export of telemetry
data (metrics, logs,
traces)

Apache
License 2.0

Vendor-agnostic
telemetry
instrumentation.
Main Apeiro
Observability
component (managed by
Greenhouse)

Telegraf SNMP polling agent
for environmental MIT License Supports direct ingestion

from PDUs and sensors.

and power
telemetry

NetBox
CMDB and device
metadata
management

Apache
License 2.0

Key for asset-to-
telemetry mapping.

Perses Visualization /
dashboarding

Apache
License 2.0

Metrics visualization
platform (managed by
Greenhouse)

Prometheus &
Thanos

Metrics collection,
storage and alerting

Apache
License 2.0

Thanos extending
Prometheus functionality
with long term metrics
storage
(managed by
Greenhouse)

OpenSearch
Storage, search,
analysis and
visualization

Apache
License 2.0

Event storage, data
visualization and
analysis
(managed by
Greenhouse)

SNMP Libraries
(e.g., PySNMP,
GoSNMP)

Communication
with PDUs, EMUs,
sensors

BSD/MIT
Licenses

Enables polling and trap
handling for device
telemetry.

Redfish API Clients
(optional
integration)

API access for
environmental and
power telemetry
from hardware

DMTF Open
Specification

Optional based on
hardware support.

B.3 License Summary

License Type Components Governed Compliance
Considerations

Apache License 2.0

Gardener, Greenhouse,
Kubernetes,
OpenTelemetry, Netbox,
Perses, Prometheus,
OpenSearch, Thanos

Permissive; modification,
distribution allowed with
attribution.

MIT License Telegraf, SNMP libraries Very permissive; minimal
obligations.

Elastic License (OSS
Version)

Elasticsearch OSS,
Kibana OSS

OSS versions must be used
to avoid commercial
licensing restrictions.

AGPLv3 Grafana
Strong copyleft license;
acceptable under open-
source goals.

OpenAPI / REST Standard ServiceNow connectors
(custom)

Standard-based; open
implementations available.

DMTF Standard Redfish API No proprietary restrictions.

B.4 Architectural Mapping

Logical Architecture Layer Associated Components

Orchestration and Deployment Gardener, Kubernetes, Greenhouse

Telemetry and Ingestion Telegraf, OpenTelemetry Collector, SNMP
Libraries

Storage Prometheus, Thanos, OpenSearch

Visualization Perses, OpenSearch

Asset Management and CMDB NetBox

Alerting and Incident Detection Prometheus - AlertManager

Ticketing Integration REST API (open-source connectors)

Optional Hardware API Layer Redfish API Clients

B.5 Sustainability and Interoperability Alignment
Consistent with sustainability objectives (Chapter 6.7):

• Open governance and extensibility across all components.
• Avoidance of vendor-locked ecosystems.
• Lightweight, scalable telemetry pipelines reduce operational overhead.
• Compatibility with energy efficiency and regulatory reporting frameworks.

B.6 Versioning and Change Management
• Platform components are maintained via Greenhouse plugin structure
• Upgrades must preserve open-source compliance and be tested against

regression suites.
• Change requests related to core components must follow governance processes

(outlined in Section 4.7)

Appendix C - References and Source Materials
This appendix enumerates the principal references, standards, regulatory frameworks,
and project documentation sources that informed the extension of Aperio Reference
Architecture in the form of Data Center Observability Platform Reference Architecture. It
serves to acknowledge foundational materials and provide transparency regarding the
basis for design decisions, regulatory mappings, and operational models discussed
throughout the blueprint.

C.1 Regulatory and Policy References

Title Source / Publisher Relevance

Directive (EU)
2023/1791 (Energy
Efficiency Directive)

European Union

Legal driver for mandatory
energy and efficiency reporting
by data centers exceeding
500kW installed IT power.

Delegated Regulation
(EU) 2024/1364
(Annex I KPIs)

European Union
Specifies detailed reporting
requirements for sustainability
KPIs in data center operations.

Regulation (EU)
2019/424 (Ecodesign
Regulation for servers
and storage)

European Union

Establishes minimum efficiency
standards for data center
equipment procurement and
operation.

Climate Neutral Data
Centre Pact Industry Self-Regulation

Voluntary commitments
towards achieving carbon
neutrality and sustainability
targets by 2030.

EU Code of Conduct
for Data Centre Energy
Efficiency

European Commission
Best practices framework for
energy-efficient data center
design and operation.

C.2 Open Standards and Technology Specifications

Title Source / Publisher Relevance

Apeiro Reference
Architecture

SAP SE / NeoNephos
Foundation

Blueprint for Cloud-Edge
Continuum

Gardener Project
Documentation NeoNephos Foundation Management and orchestration

of Kubernetes clusters at scale.

Greenhouse Project
Documentation NeoNephos Foundation

Cloud operation platform for
distributed Kubernetes
infrastructure.

Kubernetes
Documentation

Cloud Native Computing
Foundation (CNCF)

Foundation for container
orchestration within the
observability platform.

OpenTelemetry
Specification

OpenTelemetry Project
(CNCF)

Telemetry collection framework
for metrics, logs, and traces.

NetBox
Documentation NetBox Community CMDB and infrastructure

metadata management.

Prometheus
documentation

Cloud Native Computing
Foundation (CNCF)

Metrics collection and storage,
alerting

OpenSearch
documentation Linux foundation Data search, analysis and

visualization

Thanos
documentation

Cloud Native Computing
Foundation (CNCF)

Prometheus long term metrics
storage

Perses documentation Cloud Native Computing
Foundation (CNCF) Visualization dashboards

Telegraf
Documentation InfluxData

SNMP telemetry ingestion agent
for environmental and power
monitoring.

SNMP Protocol
Specifications (RFC
1157, RFC 3411)

IETF (Internet Engineering
Task Force)

Protocols enabling telemetry
polling and traps from PDUs
and environmental sensors.

Redfish API Standard DMTF (Distributed
Management Task Force)

Open standard for secure and
scalable hardware telemetry
acquisition.

Open Compute
Project (OCP)
Documentation

Open Compute Project
Foundation

Sustainability, modularity, and
transparency principles for
hardware and infrastructure
design.

C.3 Methodological References and Community Practices

Title Source / Publisher Relevance

Cloud reference
architecture Neo Nephos Foundation General guidelines for building

cloud infrastructure

Best Practices for
Observability
Architectures

CNCF Observability
Working Group

Conceptual alignment for
defining observability layers,
telemetry processing, and
stakeholder needs.

Infrastructure as Code
and CI/CD Practices

GitHub Actions
Documentation

Automation framework for
infrastructure deployment,
onboarding, and configuration
drift monitoring.

OpenTelemetry API
Reference

OpenTelemetry Project

Provides detailed API
documentation for
implementing observability in
applications.

Gardener Architecture
Documentation Gardener Project

Offers insight into the
architecture and operation of
Gardener for Kubernetes cluster
management.

NetBox Labs
Documentation NetBox Labs

Detailed documentation on
NetBox features, deployment,
and integration capabilities.

Telegraf Configuration
Guide InfluxData

Instructions for configuring
Telegraf for various data
collection scenarios.

Redfish Specification
DSP0266

DMTF
Defines the Redfish standard for
hardware management using
RESTful APIs.

Open Compute
Project Specifications

Open Compute Project
Foundation

Provides hardware
specifications and guidelines
promoting open and efficient
data center designs.

Data Center
Standards and Guides ASHRAE

Set of guidelines related to
thermal conditions withing data
centers

