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ABSTRACT 
This document outlines a blueprint for an open-source data center monitoring and 
observability platform, based on Apeiro Reference Architecture. 
Designed to address the evolving operational challenges faced by modern data center 
operators. Recognizing the increasing demands for efficiency, real-time insight, and 
scalable infrastructure management, the proposed solution targets the granular 
monitoring of individual racks through Telemetry devices, including Embedded 
Monitoring Units, intelligent Power Distribution Units, and environmental sensors.  

It emphasizes real-time data collection and analysis, SNMP-based monitoring at the 
socket level, and comprehensive environmental oversight. Integration with industry-
standard tools such as OpenTelemetry, CMDB, data lakes, and ticketing systems 
ensures streamlined incident response, enhanced interoperability, and sustainability.  

By overcoming common limitations like scalability constraints and vendor lock-in, this 
approach delivers improved reliability, performance, and operational visibility for data 
centers of varying scale and complexity. 

1. Introduction  
Modern data centers must prioritize operational efficiency, real-time monitoring, and 
scalability to manage increasing complexity. Key components like Embedded Monitoring 
Units, intelligent PDUs, and environmental sensors are vital for reliable power 
distribution and maintaining optimal conditions. However, current DCIM solutions often 
face issues such as limited scalability, vendor lock-in, and compatibility challenges, 
which can hinder proactive infrastructure management. 

This blueprint presents an open-source monitoring platform designed for data center 
operators, focused on individual racks with telemetry devices (management points, 
PDUs, sensors). 

Key features include: 

• Real-time operational data collection and analysis 
• SNMP-based monitoring of EMUs and PDUs at the socket level 
• Environmental tracking for temperature and humidity 
• Integration with CMDB, data sinks and ticketing systems 

The following sections will address core operational monitoring and control challenges 
in modern data centers. 



 

   
 

1.1 Challenges 
Modern data centers are rapidly evolving due to technological, regulatory, sustainability, 
and accountability pressures. They now operate as transparent, compliant ecosystems 
serving various stakeholders beyond IT. As a result, advanced observability platforms 
are needed to meet both technical and strategic organizational goals. 

Key challenges in the data center environment include: 

• Customization Requirements: Standardized solutions may not address the 
distinct needs of various organizations. Customization is often implemented to 
ensure infrastructure aligns with business objectives. 

• Integration: Managing and integrating multiple components can introduce 
complexity and require specialized expertise. 

• Legacy Systems: Integrating legacy systems with modern infrastructure may 
cause compatibility or performance issues. 

• Resource Allocation: Efficiently allocate resources to meet workload needs and 
reduce contention. 

• Deployment Complexity: Manage operations across varied, multi-site data 
centers. 

• Cost-Effectiveness: Utilizing an open-source and cost-efficient platform over 
proprietary alternatives. 

Monitoring embedded units, PDUs, and environmental sensors presents additional 
challenges, such as: 

• Scalability: Monitor all Embedded Monitoring Units and PDUs across distributed 
sites. 

• Interoperability: Integrate with existing CMDB and incident management tools 
without depending on specific vendors. 

• Accurate Insights: Deliver timely data to reduce downtime and optimize 
performance. 

• Environmental Metrics: Measure factors like temperature and humidity. 

These factors indicate the necessity for revised approaches. The subsequent section 
introduces the intent and strategic direction of this blueprint. 

1.2 The Need for Observability 
Traditionally, data center monitoring has been treated as a technical function, an 
operational necessity for detecting faults, measuring resource usage, and maintaining 
uptime. However, the expectations placed on modern data center operations have 
evolved significantly. 

Organizations now face demands such as: 



 

   
 

• Timely performance visibility across globally distributed, heterogeneous 
environments (including co-location and edge sites). 

• Cross-functional integration between facility, infrastructure operations teams, 
application operations teams, capacity planning, procurement, finance, and 
sustainability teams. 

• Compliance with stringent regulatory frameworks requiring not only energy 
efficiency but also auditability, transparency, and continuous reporting. 

• Adaptability to rapid deployment cycles and automation pipelines enabled by 
Infrastructure as Code (IaC), containerization, and cloud-native paradigms. 

Observability, defined as the ability to infer the internal state of a system from its 
telemetry (logs, metrics, traces) is no longer a tooling upgrade. It has become a 
foundational capability for enterprise resilience, regulatory compliance, cost 
optimization, and environmental responsibility. 

1.3 Purpose of Blueprint 
The goal of this blueprint is to deliver a targeted, composable, scalable, and modular 
monitoring platform to: 

- Provide visibility into Embedded Monitoring Units and their connected devices. 
- Provide timely insights into power consumption, environmental conditions, 

balance, function and device health. 
- Simplify the management and reporting of operational data using open-source 

tools and technologies. 
- Automate deployment and management using 
- Centralize data processing with data lake for enhanced analytics. 
- Provide integration with various systems (i.e. Ticketing). 

By implementing this solution, organizations will be able to: 

- Reduce operational risks through proactive monitoring and alerts. 
- Streamline incident management workflows via integration with Ticketing 

platforms. 
- Lay the foundation for future observability enhancements, expanding beyond 

Embedded Monitoring Units and PDUs... 

Before diving into the technical framework, it is critical to understand who this solution 
serves and how it influences organizational roles and responsibilities. 

1.3.1 Primary Objectives  

This blueprint aims to achieve the following objectives: 



 

   
 

• Establish a unified architectural framework for integrating telemetry across 
power, environmental, and asset management domains within data center 
environments, utilizing Aperio Reference Architecture components 

• Translate legal and regulatory obligations (e.g., Directive 2023/1791, Delegated 
Regulation 2024/1364) into technical design requirements and system 
capabilities. 

• Define a reference observability pipeline, including data ingestion, normalization, 
enrichment, visualization, and alerting using open-source tools. 

• Support dynamic, real-time observability of data center components such as 
PDUs, sockets, phase loads, environmental sensors, and embedded monitoring 
units. 

• Enable integration with CMDB and Incident Management / Ticketing platforms to 
ensure traceability, auditability, and automation of responses to anomalies or 
regulatory triggers. 

• Provide implementation guidance for scalable deployment across distributed 
data center infrastructure, with applicability to co-location facilities and edge 
environments. 

1.3.2 How to Read This Document 

This document is structured as both a strategic reference architecture and a technical 
implementation guide. It is intended to support a wide range of stakeholders with 
varying levels of technical expertise, functional responsibility, and regulatory 
involvement. As such, the document has been designed to be modular, navigable, and 
role-aware, allowing readers to engage with the content based on their individual 
perspective and operational focus. 

To maximize clarity and usability, this section offers guidance on how to navigate and 
extract value from the blueprint according to stakeholder function. Readers are 
encouraged to approach the document non-linearly, focusing on the chapters that are 
most relevant to their responsibilities while consulting foundational sections as needed 
for context. 

1.3.3 Recommended Reading Paths by Audience 

Audience Recommended 
Sections Purpose 

Infrastructure & 
Platform Engineers 

Chapters 2, 4, 6 
Appendices 

Understand architecture, telemetry 
sources, and deployment models 

Sustainability & 
Compliance Officers 

Chapters 1.1, 3.6.5, 
4.5, 6.4 

Map observability platform to EU 
directives, ESG KPIs, and reporting 
needs 



 

   
 

Data Center 
Operations & 
Capacity Planners 

Chapters 2, 3, 4.2–
4.3, 6.2, 6.3 

Enable proactive planning, incident 
prevention, and 
power/environmental visibility 

Service Management 
& Incident Teams 

Chapters 3.6.3, 4.6, 
6.3–6.4 

Understand alert correlation, CMDB 
linkages, and incident resolution 
workflows 

Executive & Strategic 
Leadership 

Chapters 1.1–1.2, 
3.6.6–3.6.8  

Evaluate business value, risk 
reduction, and alignment with 
transformation strategy 

External Partners & 
Regulatory Bodies 

Chapters 1.3–1.4, 
4.6, 6.5 

Assess regulatory alignment, system 
openness, and cross-entity 
interoperability 

1.3.4 Reading Recommendations 

• Readers unfamiliar with observability concepts or data center operations are 
advised to start with Chapter 2, which introduces key principles, layers of 
observability, and distinctions from traditional monitoring practices. 

• Those evaluating the blueprint for alignment with EU regulations or internal ESG 
frameworks should consult Chapter 1.3 for legal mappings and Chapter 4.5 for 
data retention and audit considerations. 

• Readers involved in actual design and deployment of observability platforms 
should focus on Chapter 4 (architecture) and Chapter 6 (implementation 
strategy), which provide a technically actionable pathway for rollout. 

• Use cases, alert thresholds, and real-world implementation logic can be found in 
the Appendices, which serve as reference material for practitioners. 

1.3.5 Document Use in Practice 

This document may be used in multiple contexts: 

• As an architectural guide for internal observability platforms across data 
centers and co-location facilities. 

• As a compliance readiness framework, showing how data flows, reporting 
outputs, and controls align with regulatory requirements. 

• As a stakeholder alignment guide during cross-functional workshops, 
procurement evaluations, or design reviews. 

• As a knowledge base for onboarding technical teams or partners contributing to 
observability deployment and lifecycle management. 

Readers are encouraged to annotate, extend, or adapt this blueprint to suit their local 
environment, technology stack, or regulatory jurisdiction. All design principles outlined 
herein are intended to be composable, reusable, and modular. 



 

   
 

1.4 Regulatory Considerations (Regulatory-Driven Framing) 
This section outlines how European and national regulations affect current data center 
operations. The resulting legal requirements and sustainability objectives serve as 
design considerations for the monitoring and observability platform described in this 
blueprint. 

Infrastructure teams typically consider uptime, cooling, and space as primary factors. 
Recently, energy consumption, carbon emissions, and public accountability have also 
been identified as key considerations. 

• Data centers use ~3–4% of total electricity in Europe. 
• The European Union now requires reporting of energy efficiency and 

environmental impact for data centers of certain sizes. 
• Failure to comply may lead to legal risk, fines, or blocked expansion in 

countries like Germany and the Netherlands. 
• Clients and investors— sustainability is now a competitive advantage. 

Observability now serves as both a compliance tool and a business enabler. 

A simplified workflow: 

1. EU Regulation (e.g., PUE reporting) 
2. Requires data (IT power vs. total power) 
3. Data collected via SNMP or Redfish from PDUs 
4. Data processed to align with OpenTelemetry model 
5. Stored in a data lake 
6. Visualized through dashboards 
7. Reports generated for EU, audits, and executives 

This system streamlines compliance, enhances visibility, and delivers operational 
insights—all framed by primary regulatory texts and mandates. 

1.4.1Market and Operational Challenges in the Data Center Sector 

Across Europe, data center operators from cloud providers to enterprise infrastructure 
teams face converging pressures including: 

Category Challenge Description 

Operational 
Complexity 

Growing footprints of global data centers, co-location cages, 
and edge sites leads to inconsistent monitoring and blind 
spots. 

Legacy vs. 
Modernization 

Many DCs operate mixed environments with legacy 
infrastructure that lacks telemetry support. 



 

   
 

Energy Reporting 
Gaps 

Operators often cannot measure or report energy 
consumption at sufficient granularity for audit or 
compliance. 

Cooling & PUE 
Monitoring 

Temperature and humidity data is inconsistently tracked, 
and PUE calculation often lacks real-time accuracy. 

Siloed System 
Ownership 

IT, facilities, finance, and compliance teams use separate 
tooling, hindering coordinated monitoring efforts. 

Sustainability Proof 
Gaps 

Reporting frameworks (ESG, EU CSRD) require traceable 
power and carbon data - current tooling often lacks in this 
area. 

 

These are no longer just best-practice shortcomings - many are now subject to legal and 
regulatory enforcement, particularly under the revised Energy Efficiency Directive (EU 
2023/1791) and its delegated implementation regulation (EU 2024/1364). 

1.4.2 Regulatory Requirements (as per Apr.2025) 

Below is a mapping of specific, enforceable obligations to architectural or design 
responses.  

Regulation Legal Requirement Blueprint Response / 
Mapping 

Directive (EU) 
2023/1791 (EED – 
Article 12) 

Data centers with installed IT 
power ≥ 500 kW must report 
energy efficiency indicators by 
Sept 15, 2024. 

Telemetry from PDUs + 
Assent Metadata → data 
Lake → exportable KPIs 

Delegated Regulation 
(EU) 2024/1364 
(Annex I) 

Operators must report: PUE, 
temperatures, waste heat reuse, 
renewable share, energy reuse 
factor, water usage. 

Floor- and socket-level 
monitoring, ambient 
temp/humidity, data lake 
enrichment 

Regulation (EU) 
2019/424 – Ecodesign 

Applies minimum efficiency 
standards for servers/storage. 
Compliance needed to 
procure/operate such devices. 

CMDB-based mapping 
of equipment type and 
model + firmware 
version tracking 

Climate Neutral Data 
Centre Pact (self-
regulation) 

Commit to 100% renewable use 
by 2030, energy reuse, clean 
water use. 

Renewable source 
tagging per site, alerting 
if usage exceeds brown 
energy thresholds 

 



 

   
 

Sources:  

• DIRECTIVE (EU) 2023/1791 
• DELEGATED REGULATION (EU) 2024/1364 
• ECODESIGN REGULATION (EU) 2019/424 
• GERMANY EEG 2023 

(subject to update as per legal proceedings – no claim for long term accuracy)  

1.4.3 Formalized Requirements Inferred (excerpt)  

Each KPI or mandate in the regulatory documents logically implies an infrastructure or 
observability feature. Below are examples of traceable causality: 

Legal Mandate (Verbatim) Inferred Platform Requirement 

“Operators shall report their Power 
Usage Effectiveness (PUE)”  
(Reg. 2024/1364, Annex I) 

Measurement of IT energy vs. total facility 
energy → Derived from rack PDU data vs. 
site-wide metering 

“...temperature set point in IT spaces and 
external air temperature” 

In-rack and whitespace temperature 
monitoring, normalized and reported at 
time-synced intervals 

“Share of electricity from renewable 
sources” 

Tagging of sites by energy sourcing 
metadata, with integration from 
procurement or power provider contracts 

“Data center waste heat utilization 
potential” 

Telemetry on inlet/outlet air differential 
temperatures, airflow patterns, or BTU 
calculations 

“Annual water usage for cooling” 
Integration with environmental and facility 
sensors where cooling towers or liquid-
based systems are used 

“Reporting KPIs to the central EU 
database annually (Article 12, EED)” 

Reporting/export API from Data Lake or 
intermediate dashboard layer, structured 
as per delegated regulation schemas 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023L1791
https://eur-lex.europa.eu/eli/reg_del/2024/1364/oj
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R0424
https://www.bundesregierung.de/breg-en/search/amendment-of-the-renewables-act-2060448


 

   
 

 

1.4.4 Advanced EU Sustainability and Taxonomy Compliance Mapping 

As data centers become both critical infrastructure and regulated environmental actors, 
the European Union has introduced overlapping legal frameworks and voluntary pledges 
that redefine observability from a purely operational tool into a sustainability-enabling 
control system.  

This section provides a glimpse of how advanced EU legislation - beyond baseline 
energy efficiency directives, shapes architectural decisions, metadata design, and audit 
workflows within the observability platform. 

Where Section 1.4.2 presented formal reporting requirements, and Section 1.4.3 
mapped legal text to inferred observability needs, this section translates strategic 
sustainability mandates, including the Corporate Sustainability Reporting Directive 
(CSRD), the EU Taxonomy Regulation, and the Climate Neutral Data Centre Pact 
(CNDCP) into design implications. It also addresses forward-looking obligations such as 
energy reuse, water efficiency, and Scope 3 readiness. 

The Corporate Sustainability Reporting Directive (Directive (EU) 2022/2464)  

CSRD introduces a dual-reporting obligation known as double materiality: 

• Financial materiality: How environmental risks (e.g., energy costs, outage-prone 
infrastructure) affect the organization’s performance. 

• Impact materiality: How the organization’s operations affect climate, resources, 
and society (e.g., carbon emissions, water draw, waste heat). 

To support CSRD-aligned reporting, observability platforms must enable quantifiable, 
traceable, and timestamped metrics that reflect both categories. 

These include: 

CSRD Topic Observability Feature 



 

   
 

Scope 2 emissions Site-level renewable energy tagging in CMDB and PDU 
telemetry 

Energy intensity Rack-to-room telemetry normalized by IT workload density 

Physical climate risks Overheat event detection, thermal capacity tracking 

Material use and 
lifecycle Telemetry-enriched health data for PDUs and sensors 

 

Design Implication: Support ESRS-aligned exportable metrics (e.g., kWh/rack/month, 
% renewable energy, ΔT over time) and link observability dashboards to disclosure 
tools or corporate sustainability platforms. 

EU Taxonomy Regulation: Substantial Contribution and DNSH 

The EU Taxonomy (Regulation (EU) 2020/852) defines criteria for economic activities to 
be classified as “environmentally sustainable.”  

Data center activities must: 

• Substantially contribute to at least one environmental goal (e.g., climate 
mitigation) 

• Not significantly harming other (DNSH) (e.g., water ecosystems, circular 
economy) 

• Respect minimum social and governance safeguards 

Mapped DNSH Considerations: 

DNSH Pillar Observability Design Response 

Climate mitigation Real-time PUE tracking, renewable energy source tagging 

Water protection Integration with water flow meters (cooling towers, CRAC) 

Pollution prevention Waste heat BTU tracking, ΔT differentials across containment 
zones 

Circular economy Equipment age/lifecycle telemetry for predictive replacement 

Resource use 
efficiency Load balancing visualizations and underutilization reports 

 



 

   
 

Design Implication: Introduce metadata tags for DNSH coverage at rack, room, and site 
levels. Support spatial overlays and metric summaries that reflect taxonomy criteria. 

Energy Reuse and the Energy Reuse Factor (ERF) 

Per Annex I of Delegated Regulation (EU) 2024/1364, ERF must be reported—the 
proportion of energy repurposed for heating or secondary uses. This requires in-rack 
temperature and airflow telemetry, waste heat measurement (via BTU estimation or 
Redfish API), and tracking reuse-eligible versus total energy consumed. 

Design Implication: Extend telemetry to support ERF calculations and heat reuse 
mapping; include compliance indicators for areas with reclaimable heat versus passive 
losses. 

Water Usage and Cooling Efficiency 

Data centers using adiabatic or evaporative cooling must now report water usage in line 
with EED Article 12 and 2024/1364. Mapped Requirements are Flow sensor integration 
(via Modbus, BACnet, or REST). Normalization of usage per kWh delivered IT load and 
Geotagging for water-stressed regions and governance zones. 

Design Implication: Ingest and store water metrics alongside energy, apply temporal 
alignment, and ensure audit traceability and add a telemetry schema extension to 
support WUE (Water Usage Effectiveness) export. 

Climate Neutral Data Centre Pact (CNDCP) Self-Audit Metrics 

• Operators participating in the CNDCP pledge to: 
• Achieve PUE targets (≤1.3 for cooler zones), 
• Reach 100% renewable energy by 2030, 
• Implement heat reuse and water efficiency goals. 

Design Implication: Introduce a Pact Compliance Dashboard template (see Appendix 
D), summarizing PUE trends and violations, Renewable sourcing status, Waste heat 
reclaims rate and zones of potential, Energy and water KPIs over time (rolling and 
seasonal). 

The dashboard should support PDF/JSON/CSV exports, optionally validated against Pact 
milestones for automated self-audit. 

Regulatory Design as System Constraint 

Advanced regulatory frameworks no longer act solely as external requirements - they 
now serve as architectural constraints that shape metadata schemas, telemetry 
priorities, and reporting outputs. Designing for EU Taxonomy alignment or CSRD audit-
readiness from the outset reduces long-term retrofit costs and positions observability 
platforms as not just technical, but strategic enablers of sustainability disclosure. 



 

   
 

2 Understanding Datacenter Monitoring and 
Observability  

2.4 Overview  
Datacenter monitoring and observability are closely related; however, observability 
goes beyond traditional monitoring which focuses on understanding and analyzing the 
state of target systems based on their outputs.  

Observability enables organizations to detect, diagnose and act towards timely and/or 
proactive resolution of issues through the added benefits of deeper insights in said 
systems.  

In summary, observability is the practice of using telemetry data – logs, metrics, traces, 
outputs to understand the behavior of systems with the goal of enhanced management, 
enhanced stability, design, identification of bottlenecks, predicting failures and 
proactive actions.   

Datacenter monitoring and observability are essential for modern infrastructure 
management. They go beyond merely tracking metrics to include comprehensive 
insights into system behavior and configuration states.  

With the inclusion of CMDB and desired state reporting, we enhance visibility and 
control, ensuring systems remain aligned with operational goals and compliance 
requirements. 

Monitoring focuses on "How it is going and what happened," while observability seeks to 
answer, "Is it acceptable and why it happened." With CMDB and desired state reporting, 
organizations can also address "how it aligns with expected behavior." 

2.4.1 Hardware Layer 
The Hardware Layer is the foundation for observability by providing telemetry data from 
specific datacenter components, such as: 

- Embedded Monitoring Units: acts as a central point for collecting telemetry 
data from/about connected devices  

- Power Distribution Units (PDU’s): Provides detailed metrics on power usage, 
capacity, efficiency, fluctuations & etc.  

- Environmental sensors: Capture information like temperature, humidity, for 
overall analysis of environmental parameters. Embedded monitoring 

- Switches and Breakers: Offer operational metrics and fault detection 
capabilities. 



 

   
 

2.4.2 Observability Software Layer  
The Observability Software Layer collects, processes and organizes telemetry data from 
the hardware layer with features that include:  

- Telemetry Aggregation: Collects logs, metrics, traces, outputs from targeted 
hardware sources. 

- Data Processing and Correlation: Links data points to dependencies, issues 
and desired insight.  

- Timely Analysis: pattern and anomalies identification upon occurrence  
- Configuration Management Integration: Continuously synchronization with 

CMDB to reflect the current state. 
- Desired State Management: Monitoring resources to ensure alignment with 

predefined configurations, alerting to deviations and config drift. 
- Self-Healing Capabilities: Automatic remediate discrepancies between current 

and desired states when possible. 

2.4.3 API and Telemetry Layer 
This layer acts as a bridge between the hardware, monitoring and observability platform, 
external and third-party systems/tools. This layer includes:  

- Access to CMDB Data: Enables real-time querying and updates to maintain 
synchronization between the physical and logical infrastructure. 

- Standardized Interfaces: OpenTelemetry, SNMP, and REST APIs facilitate 
integration with observability and configuration. 

- Desired State Reporting: APIs support state validation workflows, generating 
reports that highlight compliance or deviations. 

- Standardized Access: Interfaces like OpenTelemetry, Redfish API, REST API and 
SNMP enable uniform data collection and interaction.  

- Integration: Facilitates interoperability, management, orchestration, and 
analytics platforms.  

- Programmatic Control: Allows automation, robotic workflows and 
customization of data pipelines. 

2.4.4 Visualization and Insights Layer 
This layer represents the actual point where stakeholders and interested parties (users) 
interact with monitoring and observability data. It includes:  

- Dashboards: visual representation of key metrics and trends  
- Alerting mechanisms: Notification for threshold breaches or anomalies  
- Advanced Analytics: Historical and empirical analysis  
- CMDB Visualization: integrated view of hardware and software configurations 



 

   
 

- Desired State Reports: Highlights discrepancies between the current and 
desired states, including possible actionable insights into remediation. 

- Floorplan Visualization and Heatmapping: Provides briefly graphical 
representation of data such as rack location, consumption, acceptable operating 
parameters, capacity etc.   

- Predictive Analytics and Alerts: Based on telemetry data and CMDB 
information to predict states and/or issues.  

 

2.5 Core Principles of Datacenter Monitoring and Observability  

Principle Name Description  

Telemetry driven 
insights  

Capturing and analysis of telemetry data such as logs, 
metrics, and traces and outputs to provide actionable 
insights into system behavior and performance. 

Resource Visibility 
Ensures all hardware and software resources, such as 
PDUs, Embedded Monitoring Units, and sensors, are visible 
and accounted for in monitoring systems. 

Dynamic Resource 
Allocation 

Allocating monitoring resources dynamically to adapt to 
changing workloads and environments against CMDB  

Automation and 
Orchestration 

Automates observability workflows and aligns resource 
allocation with real-world operational demands. 

Interoperability 
Ensures integration with diverse tools, platforms, and 
telemetry standards through APIs and open protocols. 

Scalability and 
Elasticity 

Enables observability solutions to scale as infrastructure 
grows, ensuring consistent performance across 
environments. 

Proactive Maintenance Predicts potential failures using advanced analytics. 

Data Correlation and 
Context 

Links telemetry data from multiple sources to provide 
context. 

Flexibility and 
Adaptability 

Adapts monitoring and observability processes to 
accommodate new technologies and evolving business 
requirements. 

Software-Defined 
Control 

Uses software to manage and configure observability 
processes, ensuring scalability and adaptability. 

Resource Isolation Ensure observability workloads do not interfere with 
operational systems, preserving performance and security. 



 

   
 

Resource Efficiency Optimizes the use of resources for telemetry collection and 
analysis, reducing overhead. 

 

2.5.1 Benefits of Observability  
Effective observability brings transformative benefits to datacenter management: 

- Deep System Understanding: Observability provides detailed insights into the 
internal state of systems, revealing dependencies, operational state and potential 
risks. 

- Proactive Management: Predictive analytics enables addressing issues before they 
impact operations. 

- Enhanced Automation: Observability data powers automation workflows for 
incident response and resource optimization. 

- Integration: Open standards and APIs facilitate interoperability with existing IT and 
operational platforms. 

2.5.2 Observability vs. Monitoring 
While monitoring tracks predefined metrics and alerts when anomalies occur, 
observability takes a broader approach: 

- Monitoring answers the question, “What is wrong and how it is going?” 
- Observability answers the question, “Is it normal and why is it wrong?” 

Aspect Monitoring Observability  
Scope Tracks Predefined 

metrics and states 
Analyzes telemetry to provide insights 
about system state and behavior. 

Focus What is wrong and how 
is it going?  

Is it normal and why is it wrong? 

Data Sources Metrics from specific 
components like PDUs 
or sensors. 

Combines metrics, logs, outputs and 
traces for a holistic view. 

Use Cases Threshold-based alerts 
and basic performance 
tracking. 

Root cause analysis, anomaly 
detection, and predictive analytics. 

 

 

2.5.3 Benefits of Integrating CMDB and Desired State Reporting 
Integrating CMDB and desired state reporting into monitoring and observability practices 
provides significant advantages: 

Configuration Compliance: Ensures that all resources remain aligned with predefined 
baselines. 



 

   
 

Enhanced Reliability: Timely identification and remediation of discrepancies. 

Centralized Management: Consolidates configuration and telemetry data for a holistic 
view of the datacenter or datacenter units. 

Predictive Insights: Combines CMDB data with telemetry to anticipate configuration 
drift and its impact. 

Improved Governance: Strengthens auditability and compliance with industry 
standards. 

2.5.4 Monitoring, Observability and Desired State Reporting Example 
Scenario: Configuration drift detected in a critical power distribution unit (PDU) with 
parameter threshold crossing in line with prior definition.  

The process follows the pattern:  

1. Data Collection & Alerting: The PDU telemetry indicates unexpected behavior. 
2. CMDB Validation: Observability tools query the CMDB and detect that the 

current configuration does not match the desired state. 
3. Root Cause Analysis: Logs and traces correlate the drift to a recent automated 

firmware update. 
4. Automated Remediation: The system rolls back the firmware to the desired 

version and updates the CMDB.  
5. Reporting: A desired state compliance report is generated, documenting the 

issue and resolution for auditing purposes. 

To translate these principles into reality, we now provide a detailed implementation 
roadmap—outlining how to deploy and operate the observability platform across 
environments. ￼ 

3 Stakeholders and Organizational Impact 
A solution is only as valuable as the problems it solves for its users. This section maps 
key internal and external stakeholder groups across data center ecosystems, 
highlighting their priorities and challenges. By understanding business and operational 
needs, we ensure the observability platform is tailored for real-world impact. Each 
stakeholder group introduced here will have its requirements addressed in the 
subsequent architectural and implementation sections. 

We hereby undertake an exemplary exploration of how observability practices affect 
specific stakeholder groups within the company. Understanding the who (i.e., key roles) 
and what (i.e., processes, workflows) is essential to articulating observability’s strategic 
importance, especially for business professionals seeking buy-in from multiple parts of 
the organization. 



 

   
 

3.1 Why Stakeholders Matter  
The company operates an extensive global network of datacenters, co-locations and 
cloud environments, serving both external and internal clients, teams and interest 
groups. Therefore, it is standard practice that each facility must align to stringent 
requirements such as (but not limited to): uptime, availability, stability, compliance 
and energy-efficiency. 

Complexity: Multiple hardware vendors, open-source tools, proprietary components, 
and partner integrations. 

Accountability: Strict service-level agreements (SLAs) with enterprise customers 
require efficient incident management and rapid response times. 

Sustainability: Sustainability metrics are critical across all data center locations. 

Having these imperatives in mind, a wide range of stakeholders - beyond just data center 
operators - depend on reliable observability data. In this document we detail each 
group’s concerns and how observability transforms their respective workflows. 

3.2 Stakeholder Impact & Review Matrix 
Data Center Observability is not a standalone technological function - it is a business-
critical enabler across multiple stakeholder groups. In this section we attempt to 
provide a detailed mapping of each stakeholder group's priorities, the value derived from 
observability, and how the ApeiroRA Monitoring Blueprint addresses their specific 
needs. 

Stakeholder Group Primary Responsibilities 

Data Center Operations & 
Engineering 

Power/cooling oversight, infrastructure 
health, PDU/Embedded Monitoring Units 
maintenance 

Infrastructure Architecture & 
Capacity Planning 

Rack layout, scaling plans, energy design, 
power balance modeling 

Sustainability & Energy Efficiency 
Teams 

Energy footprint analysis, carbon reduction, 
reporting for GHG protocols 

Security & Compliance Audit readiness, fault logging, tamper alerts 

Procurement & Asset Management Inventory alignment, lifecycle planning, cost 
optimization 

Incident & Operations Management 
(RunOps/NOC) 

Incident triage, SLA compliance, root cause 
analysis 



 

   
 

Cloud/Platform Engineering Integration into cloud-native stacks, API 
access, GitOps 

Management & Governance Investment visibility, risk posture, policy 
enforcement 

Table 1: Stakeholder Landscape and Responsibilities 

Stakeholder How Observability Supports 
Their Role Specific Feature Mapping 

DC Ops & Engineering Dashboards, alerting, and root-
cause analysis 

SNMP telemetry from 
PDUs/Management points, alerts 
on 75%/95% thresholds 

Infrastructure 
Architects 

Predictive analytics, capacity 
utilization, load balancing 

Consumption trends, 
rack/row/room granularity 

Sustainability Teams Visibility, carbon load tracking, 
anomaly detection 

kWh tracking per rack/row/DC, 
load vs. estimated power vs. 
contract capacity 

Security & Compliance Fault/event correlation, tamper 
detection, audit logs 

Logstash enrichment, Ticketing 
Platform for incident traceability, 
config drift validation 

Incident Management 
(NOC/RunOps) 

Single source of truth during 
outages 

Ticketing + Data Lake + Alerting, 
PDU variance alerts 

Cloud/Platform Teams CI/CD pipeline compatibility, 
declarative infrastructure 

GitHub Actions, Helm, Open 
Telemetry, Redfish API 

Leadership & 
Governance 

Evidence for strategic 
investments and compliance 

KPI dashboards, audit 
compliance snapshots, capacity 
prediction charts 

Table 2: Stakeholder Impact Summary 

Stakeholder Sample KPI / Outcome 

DC Ops & Eng 50% faster root-cause resolution, 75% reduction in false 
alarms 

Sustainability Monthly GHG report automation, kWh per rack metric 

Architects Capacity forecast accuracy >90% 

Security Zero untracked config drifts in PDU Embedded Monitoring 
Units zones 

Procurement Asset utilization ratio >85% 



 

   
 

Incident Teams <15 min MTTR for power-related incidents 

Cloud Engineers Zero downtime during reconfigurations via GitOps 

Governance Blueprint adoption in 100% of new DC zones by 2025 Q3 
Table 3: Stakeholder Outcomes & KPIs (example) 

3.3 Primary Stakeholder Groups  

3.6.1 Data Center Operations & Engineering 

Responsibilities 

• Oversee daily infrastructure tasks: power distribution, cooling, rack 
management. 

• Maintain actual status for critical components like: Embedded Monitoring 
Units, PDUs, Breakers, Loads and Environmental Sensors. 

Observability Benefits 

• Improved Incident Response: Unified dashboards for SNMP/Redfish data 
expedite root-cause analysis (see Section 4.1.3). Operators can detect power 
overloads or thermal anomalies in seconds. 

• Compliance & Reporting: Automated logs and continuous polling support 
streamlined audits (e.g., ISO 27001, EN 50600). 

• Scalability: Leveraging open frameworks (Kubernetes, Open Compute Project) 
helps standardize new deployments without vendor-specific constraints. 

3.6.2 Capacity Planning & Infrastructure Architecture 

Responsibilities 

Strategically planned expansions, cluster configurations, and future resource 
allocations for cloud and on-premises offerings. 

Ensure synergy between emerging technologies (e.g., hyperconverged systems, 
container orchestration) and existing data center assets. 

Observability Benefits 

Predictive Capacity Management: Historical usage trends, from rack-level power 
metrics to container CPU usage, feed into sophisticated modeling for future growth 
scenarios. 

Reduced Overprovisioning: Visibility into real utilization helps right-size deployments - 
especially crucial as companies pivots toward “green data centers” where capacity 
must meet sustainability goals. 



 

   
 

Rapid Innovation: Observability fosters faster trial cycles for new hardware or cloud 
services, as architectural impact is visible in near-real-time logs and telemetry. 

3.6.3 Operations & Incident Management Teams 

Responsibilities 

• Manage cross-data-center events. 
• Uphold global SLAs for enterprise software customers. 

Observability Benefits 

• Single Source of Truth: Combining central data ingestion with Ticketing 
integration enables incident teams to see correlated alerts across geographies. 

• Faster MTTR: Granular data from PDUs, temperature sensors, and system logs 
reduce guesswork, zero in on anomalies that span infrastructure and application 
layers. 

• Proactive Alerts: Telemetry-driven thresholds (e.g., socket-level consumption 
over 80%) to prevent cascading failures and SLA breaches. 

3.6.4 Finance, Procurement & Vendor Management 

Responsibilities 

• Oversee costs for hardware procurement, power and cooling infrastructure, 
large-scale DC production environments. 

• Negotiate vendor contracts to align with strategic and sustainability objectives. 

Observability Benefits 

• Cost Visibility: PDU metrics at the socket or row level highlight potential 
inefficiencies (e.g., heavily over-utilized PDUs in one region vs. underutilized 
capacity in another). 

• Data-Backed Negotiation: Detailed usage data supports more effective vendor 
contract discussions—whether for electricity rates or specialized hardware 

• Budget Forecasting: Historical consumption patterns are invaluable for 
accurate quarterly or annual budgeting, aligning with major product lines or 
planned capacity expansions. 

3.6.5 Sustainability & Compliance Officers 

Responsibilities 

• Oversee environmental commitments, ensuring carbon footprint reduction and 
compliance with EU data protection and energy directives. 

• Publish internal sustainability reports and facilitate external audits (e.g., for Data 
Center Efficiency classification). 



 

   
 

Observability Benefits 

• Granular Energy Tracking: Observability data—temperature, humidity, power 
usage—feeds into carbon footprint analyses and continuous improvement in 
PUE (Power Usage Effectiveness) and for meeting ESG (Environmental, Social, 
Governance) reporting criteria. 

• Regulatory Readiness: Automated logging and centralized data archiving for 
simplified compliance with local regulations, such as Germany’s EnWG for 
energy and water usage or the EU’s Code of Conduct for Data Centers. 

• Transparency & Innovation: Visibility into exact load distribution encourages 
pilot projects (e.g., reusing waste heat or advanced cooling solutions) to achieve 
net-zero goals. 

3.6.6 Executive Leadership & Business Strategy 

Responsibilities 

• Assist in strategic roadmap on IT investments or expansions. 
• Monitor risk exposure, brand reputation.  

Observability Benefits 

• Holistic Risk Assessment: Executive-friendly dashboards highlight high-
risk areas, e.g., a cluster nearing capacity or repeated sensor alerts in a key 
data center. 

• Strategic ROI: Data-driven evidence of reduced downtime, operational costs, 
and carbon footprint. 

• Competitive Differentiation: By demonstrating robust observability across 
all data centers, companies can showcase resilience and sustainability as 
part of their unique value proposition. 

3.6.7 Impact on Core Processes 

Beyond targeting specific roles, Observability reshapes fundamental data center and 
cloud operations: 

- Incident Response Workflow 

Enhancement: correlation of events—power surge plus specific usage spike—enables 
immediate escalation to the right on-call teams. 

Outcome: Fewer false alarms, shorter mean time to acknowledge (MTTA), and overall 
improved service availability. 

- Change & Release Management 

Enhancement: Observability data integrated into GitHub Actions (or other CI/CD 
pipelines) ensures new configurations are monitored from the first deployment. 



 

   
 

Outcome: Rapid feedback on performance regressions or environmental anomalies, 
mitigating production-level disruptions. 

- Resource & Capacity Forecasting 

Enhancement: Historical usage patterns feed ML-driven forecasting to anticipate peak 
demands (e.g., during software version upgrades or seasonal cycles). 

Outcome: Balanced allocations across global data center estate, minimizing both 
overprovisioning and sudden capacity crunches. 

- Budget & Cost Allocation 

Enhancement: Usage of metrics at the organizational unit level allow each department 
to see real costs tied to their workloads (e.g., a dev/test environment versus a productive 
system). 

Outcome: Greater accountability and potential cost savings as departments make more 
informed scale decisions. 

3.6.8 Linking Observability to Broader Goals 

Observability is not simply a “tool upgrade,” but rather a strategic capability: 

• Digital Transformation: It underpins the shift to agile, software-defined data 
centers, ensuring that insights support continuous improvement and innovation. 

• Global Standardization: Observability fosters consistent processes across 
numerous data centers, reinforcing best practices and shared standards. 

• Customer Confidence: Transparent, well-documented data center performance 
helps assure clients, especially those in regulated industries, that their 
mission-critical solutions are supported by compliant, stable, efficient, and eco-
friendly infrastructure. 

3.6.9 Examples of use cases that can be achieved with the proposed 
solution:  

Category Use Case Description Purpose 

Power 
Monitoring  

Power 
Consumption 
Monitoring 

Monitor Power 
Consumption Multiple 
Levels - Floor, Cage, 
Containment zone, 
Row, Rack, PDU, Socket 
kWh) 

Ensure efficiency, Avoid 
overloads & disbalance, 
track trends, cross-
reference, Observer 
Power Posture  



 

   
 

Power 
Monitoring  

Power Load 
Monitoring 

Monitor Power load on 
Multiple Levels - Floor, 
Cage, Containment 
zone, Row, Rack, PDU, 
Socket (kW) 

Ensure efficiency, Avoid 
overloads & imbalance, 
track trends, cross-
reference, Observer 
Power Posture  

Power 
Monitoring  

Phase 
Balance 
Monitoring 

Track phase loading and 
correlate with historical 
patterns, measure 
against desired state 
and maximum capacity 

Prevent inefficiencies 
and ensure balanced 
power usage against 
desired state  

Power 
Monitoring  

Circuit 
breaker 
Monitoring  

Monitor and alert on 
circuit breaker trips or 
nearing capacity limits  

Enable preventative 
maintenance, avoid 
downtime to the extent 
possible  

Power 
Monitoring  

Socket-Level 
Load Analysis   

Evaluate individual 
socket load patterns to 
detect underutilization 
or overdraw  

Enable capacity 
planning, reduce energy 
waste, ensure proper 
balancing  

Environmenta
l Monitoring  

Temperature 
Mapping 

Display heatmaps and 
trends for rack and 
whitespace 
temperature  

Avoid overheating and 
optimize cooling 
strategies 

Alerting & 
incident 
Management  

Threshold 
based alerts  

Configure alerts for 
power events  

Rapid Response for 
critical deviation or 
catastrophic failures  

Alerting & 
incident 
Management  

Threshold 
based alerts  

Configure alerts for 
temperature events  

Rapid Response for 
critical deviation or 
catastrophic failures  

Alerting & 
incident 
Management  

Critical Event 
detection  

Detect and log SNMP 
traps for high-priority 
events (e.g., UPS, PDU 
failures) (Also possible 
thrum Redfish or REST 
API)  - Power 

Ensure Timely reaction in 
connection with 
operational disruption 
avoidance   

Alerting & 
incident 
Management  

Critical Event 
detection  

Detect and log SNMP 
traps for high-priority 
events (e.g., UPS, PDU 
failures) (Also possible 

Ensure Timely reaction in 
connection with 
operational disruption 
avoidance   



 

   
 

thrum Redfish or REST 
API)  - Temperature 

Alerting & 
incident 
Management  

Incident 
Correlation 

Correlation Power & 
Environmental metrics 
to enable RCA 

Enhance and Enable RCA 
+ Resolution speed (TTF)  

Alerting & 
incident 
Management  

Rack 
Utilization 
and balancing  

Visualize rack-level 
power and cooling 
usage for balance and 
optimization  

Prevent overloading and 
improve resource 
allocation 

Integration  Data Lake 
Integration  

Send aggregated 
metrics into enterprise 
data lakes for initial 
analytics usage  

Data Aggregation, 
Reporting, Enrichment & 
etc.  

Security  

Embedded 
Monitoring 
Units and 
Device 
Access 
Monitoring 

Monitor access 
attempts and 
configuration changes 
on Embedded 
Monitoring Units 

security and audit trails 

Security  
Firmware 
Compliance 
monitoring  

Track Firmware version 
and PDU against 
compliant versions 
(automatic version 
alerting & enforcement)  

Ensure security 
compliance, reduce 
vulnerability risks 

Alerting & 
incident 
Management  

Configuration 
Delta 
Detection 

Detect deviations 
between live 
configurations and 
desired state stored in 
CMDB 

consistency and 
compliance with system 
standards 

Compliance 
Reporting  

Energy 
Consumption 
Reporting  

Create consumption 
reports for audits / 
compliance (carbon 
footprint reporting & 
etc. if needed)  

Meet regulatory 
requirements and 
support sustainability 

Compliance 
Reporting  

Carbon 
Footprint 
reporting  

Monitor power usage to 
calculate DC carbon 
footprint  

Regulatory reporting 
needs specially in the EU  



 

   
 

Integration  
Automated 
Configuration 
Updates 

Dynamically updated 
SNMP polling settings or 
thresholds based on 
system changes 

 up-to-date configuration 
and aligned with 
operations, maintenance 
& demand management  

Environmenta
l Monitoring  

Humidity 
Mapping 

Display heatmaps and 
trends for whitespace  
humidity 

Avoid overheating and 
optimize cooling 
strategies 

Alerting & 
incident 
Management  

Threshold 
based alerts  

Configure alerts for 
humidity events  

Rapid Response for 
critical deviation or 
catastrophic failures  

Alerting & 
incident 
Management  

Critical Event 
detection  

Detect and log SNMP 
traps for high-priority 
events (e.g., UPS, PDU 
failures) (Also possible 
thrum Redfish or REST 
API) - Humidity 

Ensure Timely reaction in 
connection with 
operational disruption 
avoidance   

Compliance 
Reporting  

SLA & Uptime 
Monitoring  

Monitor uptime metrics 
+ Reporting against 
SLA/OLA 

Compliance assurance, 
reliability  

 

Having mapped the stakeholder landscape and strategic impact, we now explore the 
underlying technical framework that supports scalable, composable, and interoperable 
observability. 

  



 

   
 

4 Framework Design  

4.1 Logical Architecture  
The observability platform is architected around modular, loosely coupled layers that 
separate concerns across data acquisition, processing, orchestration, integration, and 
visualization. It is built with open-source components and industry-standard protocols 
to ensure interoperability, scalability, and enterprise-readiness. 

 

The architecture integrates critical tools and technologies into distinct layers. 

A. Data Source & Protocol Interfaces: 

Protocol / Interface Purpose 
SNMP (v2c / v3) Polls metrics and receives traps from PDUs, EMUs, circuit 

breakers, and sensors 
Redfish API (REST) Collects structured telemetry from Redfish-compatible smart 

power/thermal devices 
OpenTelemetry 
Protocol (OTLP) 

Aggregates logs, traces, and metrics from distributed services 
and agents 

REST APIs Interfaces for CMDB or third-party data pull/push operations 
 

These protocols enable secure, standardized communication with devices across 
heterogeneous environments. 

Data Collection & Ingestion:  

• Telegraf: Collects SNMP metrics and traps from Embedded Monitoring Units, 
PDUs, and environmental sensors. 



 

   
 

• Redfish Collector: (Python/REST-based or plugin-based): Gathers metrics over 
HTTPS from Redfish-enabled devices. 

• OpenTelemetry Collector: Ingests logs, traces, and metrics from agents 
deployed on infrastructure or services. 

All collectors need to be configured with polling frequency, authentication, device 
mapping, retry logic & etc. 

B. Orchestration and Deployment 
- Kubernetes (Gardener): Orchestrates containerized components and ensures 

scalability including fault tolerance  
- Greenhouse: Simplified deployment and management of applications including 

version-controlled deployment configuration among distributed clusters 
C. Data Processing:  
- Collector-processors: Processing and transformation of SNMP and telemetry 

data 
- Data lake: Metrics/events storage, indexing, enrichment and querying. 
D. Integration  
- CMDB: Manages inventory, device metadata, desired and current state, providing 

visualization support.  
- Ticketing Platform: handles incident response and workflow automation  
- Observability layer and correlation engine: Receives enriched analytics for 

data lake and observability analytics. 
E. Visualization:  
- CMDB: Floorplan visualization, heatmap & overview  
- Perses: Dashboards, data analysis 

4.2. Metrics Monitored 
 Power Metrics:  

Metric Description 

PDU Socket Level 
Consumption 

Measures how much power is drawn from each outlet/socket on 
a PDU (in kWh). Helps track energy use per device. 

Phase Balancing 
Evaluates whether the electrical load is evenly distributed 
across all three power phases. Imbalance may reduce 
efficiency or cause faults. 

Power Load 
Distribution 

Tracks how power usage is distributed across racks, cages, and 
floors. Highlights hotspots or underutilized zones. 

Consumption 
Fluctuations 
(Peaks) 

Highlights sudden power spikes, which may indicate faults, 
high-load events, or cooling failure responses. 



 

   
 

Power Stability 
Monitors the consistency of power delivery over time (e.g., 
voltage/current variation). Instability may signal upstream 
electrical issues. 

Power Capacity 
Consumption 

Measures current consumption against rated capacity of PDUs 
or circuits. Helps avoid overloads and triggers capacity alerts. 

 

Environmental Conditions:  

Metric Description 
Temperature Real-time and historical readings from rack, row, or room-level 

sensors. Helps manage thermal profiles and cooling efficiency. 
Humidity Tracks moisture levels within whitespace. Helps prevent 

equipment corrosion or electrostatic discharge. 
 

Device Health: 

Metric Description 
Uptime Measures the operational availability of PDUs, EMUs, and other 

monitored devices. 
Error Logging Captures and classifies error events, warnings, or critical 

system logs from devices. 
Device Response 
Metrics 

Evaluates latency, success/failure of SNMP or API queries — 
signals device health and communication issues. 

Fault Telemetry Detects hardware-specific alerts like breaker trips, thermal 
failures, or tamper events. 

 

To support such a platform, the infrastructure itself must be modular and dynamic. The 
next section introduces composable infrastructure and how it enables flexibility and 
control. 

4.3 Data Quality & Normalization Principles 
Any operational and fit for purpose observability platform relies on clean, consistent, 
and structured data to deliver meaningful insights, enable automation, and support 
downstream decision-making processes. In heterogeneous data center environments 
where equipment varies by vendor, model, firmware version, and communication 
protocol, ensuring data quality and semantic consistency becomes foundational to 
success. 

This section outlines the principles and practices ensuring data ingested into the 
observability pipeline is normalized, consistent, and enterprise-usable across all 
modules. 



 

   
 

4.3.1 Unified Data Model  

All incoming telemetry — whether SNMP-based metrics, Redfish payloads, 
OpenTelemetry streams, or REST API results, is transformed into a unified internal data 
model (extending OpenTelemetry timeseries model and semantic conventions). This 
common format allows systems to interpret data uniformly across locations and 
devices. 

Examples of Primary Fields:  

• hw.type (e.g., “PDU”, “Embedded Monitoring Units”, “temperature_sensor”) 
• hw.name (canonicalized identifier: DC-WDF-CAGE3-PDU-04) 
• timestamp (UTC ISO 8601) 
• location.path (hierarchical: DC > Cage > Rack > Device) 
• hw.status (ok/degraded/failed) 
• source_protocol (SNMP, Redfish, OTEL, etc.) 

In this example the scheme is enforced in data collection pipelines, ensuring 
consistency regardless of source heterogeneity. 

4.3.2 Naming & Tagging Conventions  

Inconsistent naming is one of the primary causes of operational drift and observability 
blind spots. Therefore, a strict naming and tagging convention is used for all devices and 
metrics. 

Device Names: 

• Follows the pattern: Location Code-Room/CageCode-DeviceType-Sequence 
• Example: DC-FRA-CG2-PDU-08 

Rack Identifiers: 

• Should match CMDB entries: RACK-WDF-01-15A 

Metric Namespaces: 

• Use dot notation with clear hierarchy: power. socket. load_kw, env. temp_c, 
breaker. status 

Tagging: 

• All data points include tags for site_id, rack_id, EMU_id, device_vendor, 
firmware_version, and region 

• Tags are critical for filtering, alert scoping, and dashboard generation 

Enforcement of naming policies is integrated into CMDB through validation rules and 
form constraints. 



 

   
 

4.3.3 Timestamp Synchronization 

• All devices must provide telemetry with timestamps either in UTC or local time 
zone with offset metadata. 

• Embedded Monitoring Units without native timestamp support will have polling 
timestamps assigned by a collector, with a fixed polling interval. 

• NTP synchronization is a hard requirement for all management devices, 
Embedded Monitoring Units, and hosts to prevent false-positive alerts caused by 
time drift. 

4.3.4 Metric Normalization & Unit Handling 

Vendors expose metrics in inconsistent units (e.g., watts vs. kilowatts, Fahrenheit vs. 
Celsius). This platform standardizes units for analytical consistency. 

Standard Units: 

• Power: kW 
• Energy: kWh 
• Temperature: °C 
• Humidity: % 
• Load/Capacity: % 

All incoming metrics undergo unit normalization inside Logstash or Telegraf using 
transformation filters. Any metric that cannot be reliably converted is flagged and 
optionally dropped, ensuring data cleanliness over data completeness. 

4.3.5 Data Integrity & Validation  

To prevent corrupt or misleading data: 

Zero and Null Handling: 

• null, NaN, or zero values from known faulty sensors are discarded or flagged via 
status=unknown 

Out-of-Range Detection: 

• Thresholds are applied at the edge to drop or flag impossible values (e.g., 
temperature > 85°C, socket load > rated value) 

Rate of Change Validation: 

• Sudden changes are compared against prior samples (e.g., power load spike of 
300% triggers a review) 

These validations ensure that dashboards and automated alerts are not polluted by low-
quality or erratic data. 



 

   
 

4.3.6 Deviation Correction Model for Quantized Power Telemetry in PDUs  

Some PDUs sometimes exhibit telemetry quantization effects, where reported power 
values are rounded to coarse steps - typically in 0.1 kW increments. This results in 
significant loss of resolution for low-power devices (<200 W), leading to underreported 
or zeroed-out power readings. This behavior introduces systematic deviation that 
hampers monitoring fidelity, capacity planning, and energy reporting accuracy. 

4.3.6.1 Observed Behavior & Problem Statement 

In example:  

- Ptrue to be the actual power consumption at a given time (in Watts)  
- Preported to be the power reported by the PDU  

For Affected Devices:  

𝑃{𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑}  =     ⌊
𝑃{𝑡𝑟𝑢𝑒}   

100
⌋ × 100  

This causes: 

- Ptrue ∈ [0,99] → Preported = 0 

- Ptrue  ∈ [100,199] → Preported = 100 

- etc.  

This quantization step of 100W (0.1kW) leads to: 

- Up to 99W of underreporting per socket 
- Aggregate underestimation of load 
- Inaccurate power heatmaps and failure to trigger alerts 

 

4.3.6.1 Proposed Correction Model  

The correction model leverages more granular telemetry inputs voltage and current to 
compute apparent power, which avoids the quantization bias present in the reported 
real power. 

4.3.6.1.1 Apparent Power Estimation  

Given: 

- I : RMS current reported by the PDU (in Amperes) 
- V : RMS voltage reported by the PDU (in Volts) 

Then the apparent power is   S  =  V × I   [in VA] 

To convert to kilowatts: 𝑃estimated =  S 
1000 



 

   
 

 

If Power Factor (PF) is known or can be assumed: 𝑃estimated =  

Where PF ∈ [0.8, 1.0] depending on the device  

4.3.6.1.1 Correction Logic  

We define the corrected power reading:  

 

Pcorrected =  

 

If Preported is a multiple of 100W and deviation > ∈  

Where:  

-  ∈ is a defined tolerance threshold (e.g., 20W)  
- A deviation flag can be raised if Preported – Pestimated  |  >  ∈ 

 

4.3.6.2 Algorithmic Steps 

1.Poll SNMP OIDs for: 

- V: Voltage per socket (or bank) 
- I: Current per socket (or bank) 
- Preported : Real power per socket  

2. Compute Pestimated = V × I/1000 
3. Compare Pestimated and Preported  
4. If deviation > ∈, substitute Pcorrected = Pestimated  
5. Flag deviations for visualization and alerting 

 

Example: 

Let:  

• V=230 V 

• I=0.43 A 

• PF=0.95 

Then:    Pestimated =  
230×0.43×0.95

1000
≈ 93.9 W 

Assuming:  

- Preported = 0 W 

- ∈ = 20W 

V x I x PF  
1000 

{ 

Pestimated 
Preported 



 

   
 

Then: |𝑃𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑃𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑| = 93.9 W > 20 W ⇒ 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 93.9 W 

 

4.3.6.3 Operational Deployment Notes 

Implementing the deviation correction model in a real-world observability platform 
requires thoughtful integration with existing telemetry pipelines and system 
architecture. The following considerations guide the operationalization of the model: 

Pipeline-Level Correction: 

Deviation correction should be applied during the data ingestion phase, prior to storage 
or visualization. Tools such as Logstash (via Ruby filters), Telegraf (via Starlark or execd 
processor plugins), or Kafka Streams can be used to calculate estimated power values 
based on voltage and current telemetry, compare them against reported values, and 
override where deviations exceed defined thresholds. 

Deviation Metadata Management: 

Corrected readings must include associated metadata, such as: 

• correction_applied: true/false 

• original_reported_value 

• correction_method 

• deviation_amount (W) 

This metadata ensures transparency, facilitates root cause analysis, and supports 
auditability, especially in regulatory or billing-sensitive environments. 

Power Factor (PF) Handling: 

When PF is not explicitly reported by the PDU, estimated real power should be derived 
using: 

• Default values by device category (e.g., compute servers: 0.95, storage: 0.9) 
• Operator-defined constants via configuration 
• Adaptive heuristics, e.g., mapping PF to outlet type (C13/C19), or based on 

historical device signatures. 

Accuracy Optimization for Critical Use Cases: 

For environments requiring high accuracy, such as: 

• Energy billing and chargeback models 
• Regulatory reporting for CO₂ impact or PUE 

The correction model should incorporate cross-referenced measurements from 
calibrated power meters or rack-level sensors, ensuring reconciliation of estimated 



 

   
 

values with known ground truths. This may involve periodic calibration jobs or Bayesian 
smoothing of noisy SNMP signals. 

Alert and Dashboard Integration: 

Visualizations (e.g., Kibana) and alerts must reflect both corrected and reported values, 
especially where large deltas may indicate: 

• Firmware bugs 
• Device degradation 
• Environmental influences (e.g., voltage sag) 

This transparency supports operational decision-making and increases trust in 
observability outputs. 

Extensibility and Modularity: 

The correction logic should be encapsulated in modular enrichment components 
decoupled from ingestion logic, allowing independent updates, hot-patching, and 
vendor-specific adaptations. 

4.3.6.4 Limitations and Considerations  

While the deviation correction model significantly improves telemetry fidelity in some 
environments, it also comes with inherent limitations and practical boundaries. 

Apparent vs. Real Power Estimation: 

The model estimates real power from apparent power, relying on an assumed or 
configurable power factor (PF). Since PF varies with workload type, power supply 
efficiency, and transient conditions, the estimation remains an approximation. Without 
direct PF telemetry, precise restoration of real power is not possible. 

 

 

 

Granularity Constraints in Legacy Devices: 

Some PDUs lack per-socket or per-bank telemetry, exposing only total or aggregated 
readings. 

In such cases: 

• Socket-level deviation correction cannot be applied. 
• Aggregated estimations may obscure localized power anomalies. 

This limits the model’s applicability to device-level or phase-level corrections only. 



 

   
 

Firmware/Hardware Override Scenarios 

If the vendor releases firmware updates that address the rounding issue or provide 
enhanced MIB access (e.g., unquantized values, PF telemetry), the correction model 
should be automatically disabled or bypassed to prevent double-modification and 
preserve original device fidelity. 

Model Suitability Boundaries 

The model is intended for operational visibility, anomaly detection, and predictive 
analytics. It is not certified for regulatory metering, legal energy billing, or forensic 
analysis where IEC-certified instrumentation is required. 

Device-Specific Behavior 

Correction logic must account for device-specific variations, such as: 

• Different rounding schemes (e.g., ceiling vs. floor) 
• Per-phase vs. per-outlet inconsistency 
• Manufacturer-specific voltage scaling (e.g., 10x encoded) 

Maintenance and Exception Handling 

When deviation exceeds a predefined maximum threshold (e.g., 150 W), this may 
indicate a hardware fault, configuration drift, or telemetry mismatch. In such cases, 
operators should be alerted to investigate further rather than apply blind correction. 

 

4.3.7 Device Identity Mapping & Source Trust 

Each device is uniquely tracked across: 

• SNMP OIDs, MAC addresses, and CMDB UUIDs 
• Mappings are established and maintained in a Device Identity Registry, aligned 

with the CMDB (CMDB) 

Data ingestion pipelines cross-validate telemetry against known inventory to prevent 
ingestion from: 

• Rogue or Unregistered Devices 
• Devices not yet approved in change control 
• Devices with conflicting or spoofed identity 

4.3.8 Data Enrichment Policies 

After validation and normalization, data is enriched with contextual metadata pulled 
from CMDB: 

• Rack location (aisle, row, quadrant) 



 

   
 

• Device role (core PDU, edge Embedded Monitoring Units, spare) 
• Assigned teams or departments 
• Maintenance SLA and lifecycle stage (e.g., “End of Support”) 

This enables context-aware alerting, SLA-aware incident routing, and cleaner 
dashboards filtered by business responsibility. 

4.3.9 Monitoring Data Health 

Finally, the observability stack itself is monitored for data quality indicators: 

• Missing data gaps per device 
• Anomalous volume drops (e.g., expected 10,000 samples/hour → currently 

2,000) 
• Schema violations (e.g., unexpected new field or missing tag) 
• Outdated CMDB mappings triggering errors 

Alerts are routed to the team responsible for observability platform health. 

4.4 Security Considerations  
A robust observability platform is only effective when built on a foundation of strong 
security. Data center telemetry involves sensitive infrastructure data, access 
credentials, and operational metadata all of which must be safeguarded to ensure 
operational continuity, regulatory compliance, and the protection of global data center 
landscape. 

This section outlines the core security design principles, implementation strategies, and 
integration requirements for the observability platform.  

4.4.1 Zero Trust Architecture 

The platform adopts a Zero Trust model — no component is implicitly trusted, regardless 
of whether it resides inside or outside the network boundary. Every communication, 
user, or process must prove its identity and authorization at every interaction. 

Key Aspects: 

• Micro segmentation of telemetry collection, processing, and visualization 
services to reduce lateral movement risks. 

• Mutual TLS (mTLS) for all internal services - external ingress points use TLS 1.2+ 
with strong cipher suites. 

• Service identity enforcement: Every node, agent, and pipeline component are 
authenticated via service accounts or certificate authorities. 

• Policy enforcement points placed at ingress (API gateways, reverse proxies) and 
internal traffic chokepoints. 



 

   
 

4.4.2 Authentication & Authorization 

Every interaction within the platform (e.g., device polling, data ingestion, dashboard 
access, config management) must undergo strict authentication and role-based access 
control (RBAC). 

Components: 

• CMDB & data lake: Integrated with corporate IAM (e.g., Identity Authentication 
Service) using SAML/OAuth2. 

• Data collectors: Service accounts with least privilege for polling and 
transformation. 

• Kubernetes Cluster: RBAC roles scoped to namespace and workload level 
secrets stored using sealed secrets or Vault. 

• Fine-grained RBAC policies defined per tool (e.g., Kubernetes, CMDB, 
visualization dashboards). 

• Separate human access (e.g., analyst dashboards) from machine access (e.g., 
polling agents, CI/CD systems). 

• Support token-based access with automatic expiration for RESTful APIs or 
Redfish endpoints. 

4.4.3 Secure Telemetry Ingestion 

Given the reliance on SNMP and/or Redfish: 

SNMP: 

• Prefer SNMPv3 (authentication + encryption) over SNMPv2c wherever supported. 
• Community strings must be rotated regularly and stored encrypted (e.g., 

Kubernetes secrets or Vault). 
• SNMP traps are received on dedicated secure channels with strict firewall rules 

and traffic filtering. 
• Use trap filtering and firewall whitelisting to restrict inbound telemetry. 
• Rotate community strings or user credentials every 30–90 days. 

 

Redfish API: 

• Use HTTPS/TLS-only endpoints. 
• Token-based authentication where possible, with short-lived access tokens. 
• Device certificates must be validated against trusted internal certificate 

authorities. 
• Validate API inputs against schemas to prevent injection attacks. 



 

   
 

4.4.4 Data Integrity and Tamper Detection 

Data ingested into ELK data lake and cross-referenced via CMDB is cryptographically 
hashed at rest to ensure integrity. 

Techniques: 

• Use Elasticsearch’s built-in support for immutable indices with timestamped 
logs. 

• Implement checksum validation during log ingestion for critical SNMP traps (e.g., 
PDU faults, breaker trips). 

• Audit trails must be written to append-only storage for critical infrastructure 
components. 

4.4.5 Role-Based Access Controls (RBAC) & Segregation of Duties 

Each stakeholder group (e.g., DC Ops, RunOps, Finance, Security) is granted access 
only to the data and dashboards relevant to their responsibilities. 

Governance: 

• Read/write segregation (e.g. admins vs. viewers). 
• Configuration drift alerts can only be acknowledged or overwritten by authorized 

infrastructure engineering roles. 
• Visualization dashboards are scoped by department/team with granular index-

level permissions. 

4.4.6 Secrets & Credential Management 

All secrets (SNMP credentials, Redfish API tokens, webhook keys, kubeconfigs, GitHub 
Actions tokens) must be centrally managed, encrypted, and rotated. 

Recommended Tools: 

• Vault or Kubernetes Secrets (with Sealed Secrets for GitOps). 
• GitHub Actions: Avoid storing secrets in plaintext YAML - use GitHub Secrets and 

access them at runtime. 

4.4.7 Secure CI/CD Pipelines 

Automation workflows (e.g., GitHub Actions) that deploy Helm charts, update cluster 
configurations, or manage monitoring thresholds must be secured end-to-end. 

Controls: 

• Use branch protection rules to restrict changes to production pipelines. 
• Require code reviews for CI/CD configurations. 
• Monitor CI logs for secrets exposure and enforce secure linting policies. 



 

   
 

4.4.8 Monitoring Platform Security 

The observability platform must monitor itself to detect anomalies, intrusions, or 
unauthorized configuration changes. 

Examples: 

• SNMP traps for Embedded Monitoring Units access events pushed to data lake 
and analyzed with ML for unusual patterns. 

• CMDB configuration deltas (desired vs. actual) logged and retained for post-
incident forensics. 

• Telemetry from Kubernetes control plane (e.g., API server logs, etcd access logs) 
analyzed via OpenTelemetry collectors. 

4.4.9 Compliance & Audit Readiness 

All telemetry and configuration data must support internal and external audits, 
particularly for frameworks such as: 

ISO/IEC 27001, NIS2 (EU), EN 50600 / EN 50701, German EnWG (Energy Industry Act) 

Controls: 

• Immutable logs with retention policies (e.g., 1 year for critical systems). 
• Automated monthly audit reports show observability platform changes, alerts, 

escalations. 
• Integration with Ticketing Platform GRC for ticket traceability and workflow 

documentation. 

4.4.10 Network and API Security 

• Firewalls and segmentation restrict telemetry flows to only approved 
source/destination pairs. 

• Rate limiting and DoS protection applied on API endpoints and SNMP trap 
receivers. 

• Input validation and schema enforcement at ingestion points to prevent 
malformed or malicious payloads. 

Optional Enhancements (Pluggable per Maturity Level) 

• SIEM integration: Feed telemetry alerts into enterprise SIEMs (e.g. Enterprise 
Threat Detection). 

• Multi-Factor Authentication (MFA) 
• Behavioral analytics: Apply anomaly detection to telemetry patterns for early 

breach detection. 



 

   
 

4.5 Data Lifecycle Management and Compliance Considerations  
As telemetry data volumes grow across the global data center landscape, managing the 
lifecycle of observability data is critical. Effective lifecycle management ensures 
compliance with regulatory standards, optimizes storage costs, and supports high-
performance analytics. 

This platform enforces structured lifecycle practices for telemetry data, aligned with 
enterprise policies and European Union regulations such as GDPR, EnWG, and the 
Ecodesign Directive & etc. 

4.5.1 Retention and Archiving Strategy 

Telemetry data is categorized based on type, criticality, and operational usage. The 
following table outlines standard retention policies and archiving behavior: 

Data Type Retention Period Archival / Rollup Behavior 

Power metrics (e.g., kW, 
kWh per socket/PDU) 

12 months 
(standard) Daily aggregates after 30 days 

Environmental metrics 
(temperature, humidity) 6–12 months 

Monthly aggregation and 
compression 

Alerts, Events, SNMP Traps 3–6 months Indexed for correlation - 
optionally archived 

Configuration Snapshots 
(CMDB) 12–24 months Immutable snapshots retained 

for audit compliance 

User & dashboard config 
logs 3 months Anonymized, non-critical, 

deleted after expiration 

 

Lifecycle tags are applied at ingestion time to support automated transitions in Data 
Lake (ELK Stack). 

4.5.2 Data Classification and Tagging 

All telemetry data is tagged with lifecycle metadata for automated policy 
enforcement: 

• Data type: (e.g., power, temperature, water, CO₂) 
• Sustainability relevance: (e.g., CSRD, ERF, Scope 2) 
• Jurisdictional tagging: (e.g., DE, FR, EU-wide, non-EU) 
• Confidentiality level: (e.g., internal, public-facing, audit-only), 
• Lifecycle status: (e.g., real-time, archived, export-ready). 
• Origin location: (e.g., DC-WDF-FL1-RACK12) 



 

   
 

• Business retention class: (e.g., short-term, audit, long-term) 

Integrate tagging directly at the point of ingestion and propagate through data lake or 
CMDB overlays for full pipeline visibility. 

Tags need to support filtered queries, dashboard scoping, and compliance-aligned 
rollup or removal workflows. 

4.5.3 GDPR and Regulatory Compliance Considerations in respect to data 

The platform should adhere to data handling best practices in accordance with: 

• GDPR (EU 2016/679) 
• German EnWG (Energy Industry Act) 
• EU Ecodesign Directive 
• EU Code of Conduct on Data Centre Energy Efficiency 

Key compliance measures: 

• No personal data (PII) is collected or stored included such that may identify a 
person from naming of accounts, digital identities & etc. 

• Anonymization and data minimization principles are applied. 
• Logs and telemetry for regulated energy and carbon reporting are retained by 

applicable guidelines. 
• Immutable logs support audit trails and forensic requirements. 

Example Diagram:  

 

4.5.4 Data Integrity During Retention 

To maintain the legal admissibility and operational utility of telemetry over time, integrity 
must be enforced through: 



 

   
 

• Hash chaining or checksum validation at the archival layer (e.g., for immutable 
snapshots), 

• Clock synchronization across telemetry-producing agents (NTP/NTS 
enforcement), 

• Tamper-evident metadata, such as automated origin tagging and time-
sequencing. 

This is particularly relevant for CSRD or ISO 50001-aligned energy records, where 
historical traceability may be audited several years post-ingestion. 

Compliance-Centric Design Goals 

Compliance 
Requirement Lifecycle Design Feature 

CSRD/ESRS monthly 
disclosures 

Monthly rollup snapshots of PUE, ERF, Scope 2 
telemetry, with CSV export capability 

Article 12 EED (annual 
uploads to EU database) 

Year-based data extraction schemas from the data lake 
(e.g., Kibana Saved Queries or API-bound Dashboards) 

Climate Neutral Pact KPIs Rolling year-on-year dashboards with built-in deltas and 
threshold alarms for self-audit use 

EU Taxonomy DNSH proof Tag historical telemetry by environmental objective and 
extract as evidence for financing documentation 

 

4.6 Enterprise Integration Expectations  
The observability platform is designed and intended to integrate with broader enterprise 
ecosystems, ensuring data consistency, insights, and alignment with operational 
workflows across internal tools and external service platforms. 

This section outlines key integration points, governance responsibilities, and expected 
data flows across systems such as CMDB, Ticketing, observability layer + correlation 
engine, and optional enterprise observability platforms. 

4.6.1 Integration Overview  

The platform both produces and consumes telemetry, CMDB, and alert data, aiding 
timely decisions and long-term strategic analysis. 

System Purpose Integration Method 

CMDB 
Asset registry, location 
tagging, config state, 
visualization of reports 

Bi-directional sync (via API / 
webhooks) 



 

   
 

Ticketing Platform Incident management, 
alert correlation, audit REST API integration Data Lake 

Data Lake 
Data lake for 
enrichment, analytics, 
history 

Central ingestion e.g. 
OpenTelemetry receiver or 
dedicated API 

Observability layer and 
correlation engine 

Company-wide 
observability analytics 
backbone 

API-based forwarding from Data 
Lake 

Alerting Framework 
Rule-based alert 
correlation & 
suppression 

Connected through 
OpenTelemetry + metadata 
tagging 

Optional SIEMs Security analytics and 
event management Log forwarding with tag filters 

 

4.6.2 CMDB - Source of Truth Alignment  

CMDB should provide: 

• Inventory Management: Data of racks, PDUs, Embedded Monitoring Units, 
breakers, outlets, sensors, and logical grouping. 

• Configuration Metadata: Tracks firmware, desired state, vendor mappings, and 
lifecycle data. 

• Desired State Management: tags and metadata are used for additional 
definition of alert thresholds, polling configurations, and compliance rules. 

Visualization Plugin Integration: 

• Supports floorplan visualization, heatmaps, and topology mapping via integrated 
plugins. 

• Enables operations teams to graphically navigate the data center environment, 
quickly identify issues (e.g., overheating rack, power imbalance), and correlate 
telemetry visually. 

• Dashboards can reflect telemetry overlaid on physical layouts or rack elevations. 

All telemetry collected is cross-referenced against CMDB: 

• Device ID and location → used to anchor telemetry context 
• CMDB-to-live mapping → enables drift detection 
• Tagging and metadata → supports enriched alerting and ticket context 
• By enriching telemetry with CMDB metadata and exposing spatial context, the 

platform supports real-time, intuitive troubleshooting and planning workflows. 



 

   
 

4.7 Governance and Change Control (non-technical)  
An observability platform is only as effective as the operational policies and ownership 
structures supporting it. To ensure maintainability, consistent data quality, and business 
alignment, this section defines non-technical governance responsibilities across 
stakeholders. 

This includes control of thresholds, alert logic, versioning, and data consumption 
standards. 

4.7.1 Governance Scope 

Governance covers three key domains: 

• Configuration Control: Who defines thresholds, tags, alert logic, polling intervals, 
etc. 

• Platform Evolution: Who owns the lifecycle of dashboard updates, CMDB schema 
extensions, and CI/CD changes. 

• Operational Ownership: Who reacts to alerts, investigates data anomalies, and 
tunes observability workflows. 

4.7.2 RACI Matrix: Platform Ownership (example) 

Activity / 
Function 

RunOps / 
NOC 

Infra 
Architecture 

Platform 
Team Security 

Infra 
Engineering 
(Cloud/DC) 

Define alert 
thresholds 

(power, temp, 
humidity) 

R A C C I 

Manage 
SNMP/API polling 

& intervals 
C R A I C 

CMDB schema 
extensions I A R C C 

Dashboard 
versioning C R A I C 

Ticketing 
Platform 

integration tuning 
A I R I I 

Credential 
rotation 

(SNMPv3, API 
tokens) 

I I C A R 

Compliance 
reporting data 

definitions 
C C I A I 

Table 4: Legend: R = Responsible / A = Accountable / C = Consulted / I = Informed 



 

   
 

4.7.3 Example Change Management Policy 

Changes to observability configurations (e.g., thresholds, polling, data pipelines) 
must follow documented change control procedures: 

• Proposal Phase: Changes proposed via GitHub Pull Request or internal ticketing. 
• Review Phase: At least two stakeholder teams must approve (e.g., Platform + 

RunOps). 
• Staging Validation: New configs tested in non-production data lake and CMDB 

environments. 
• Production Release: Via Helm or GitHub Actions, with change log updated. 
• Rollback: Each change includes rollback procedure and validation window. 

4.7.4 Operational Ownership by Platform Zone  

Platform Zone Owning Team Change Cadence Example Artifacts 

Data collectors Platform 
Engineering 

Weekly SNMP OID changes, new 
polling targets 

Data lake Observability 
Platform Team 

Bi-weekly New field mappings, tag 
parsing rules 

CMDB Infrastructure 
Architects 

Monthly New device types, rack 
location updates 

Alerting Platform Team 
+ Ops 

On demand Alert tuning, uptime views, 
KPI visualizations 

Ticketing 
Workflows 

RunOps Quarterly Alert suppression, 
escalation chains 

 

4.7.5 Configuration Drift & Change Automatic Detection Example 

To detect unauthorized or accidental configuration changes: 

• Asset Information and CMDB desired state is compared nightly to current 
telemetry. 

• Drift reports are auto generated and routed to owners. 

Examples: 

• Rack moved without CMDB update 
• Device firmware mismatch 
• Unexpected polling interval change 
• Alerts are logged and tracked as potential compliance issues.  



 

   
 

5 Understanding Composable Infrastructure  

5.4 Overview 
"Composable" represents a service-centric model where a wide range of resources are 
rapidly reassigned to accommodate service components. It integrates software-defined 
capabilities into hardware elements to streamline and automate administrative tasks 
involved in deploying and managing disassembled infrastructure.  

In brief, “Composable infrastructure is an information technology framework where the 
physical resources are treated as services.”  

 

5.4.1 Hardware Layer  

The Hardware layer is the foundational components targeted components in this case 
Embedded Monitoring Units, PDU’s, Outlets, Brakers, Phases, Temperature and 
humidity sensors that form the basis of the infrastructure.  

5.4.2 Composable Software Layer  

The Composable software layer assists as an abstraction layer for the physical 
components, arranging them into logical resource pools that can be accessed through 
the API, SNMP or other data mechanisms. This software is equipped with 
programmable, configurable, and self-correcting functionalities. It can autonomously 
orchestrate the essential logical resources to meet specific requirements. It has the 
capability to utilize templates that offer preconfigured setups tailored for specific use 
cases. This layer relies heavily on software-defined control. 



 

   
 

5.4.3 API, SNMP Layer  

The API and SNMP play a crucial role by enabling access to the hardware resources 
within the infrastructure. It acts as a consolidated interface for executing a wide range of 
operations, encompassing tasks like reporting, alerting, searching, managing inventory, 
provisioning, conducting updates, and performing diagnostics. 

5.5 Application or End-User Usage Layer 
The application layer refers to the topmost layer in the architecture, where end-user 
applications or services interact with and utilize the underlying infrastructure and 
resources. 

5.6 Core Principles  
The platform is built on several core principles that define its approach to data center 
monitoring, observability, architecture and resource management. These principles help 
to understand and implement the platform effectively.  

Principle Name Description  

Resource Pools 

Infrastructure abstracts physical hardware components, such 
as Embedded Monitoring Units, PDU’s, Sockets, Sensors, 
breakers & etc., into resource pools. Resource pools are 
established by aggregating these hardware resources, thereby 
enabling their availability. 

Software-Defined 
Control 

Infrastructure and platform are built upon software-defined 
technologies for its control and management. The management 
and availability of resources controlled by software rather than 
being tightly bound to specific hardware configurations. 

Dynamic Allocation 
Resources can be allocated dynamically to different target 
objects or devices as needed, and these allocations can be 
adjusted in real-time. 

API-Driven 
Management 

This solution aims to provide APIs (Application Programming 
Interfaces) that allow administrators to programmatically 
manage target devices, addressing and data resources. 

API-driven management enables automation, orchestration, 
and seamless integration with other IT management systems. 



 

   
 

Resource Isolation 

Composable infrastructure enables resource isolation, ensuring 
that each workload or application has dedicated resources for 
performance, security, and compliance purposes. Resource 
isolation is achieved through software-defined resource 
allocation. 

 

 

Elasticity and 
Scalability 

Composable infrastructure is designed to be elastic and 
scalable, allowing organizations to easily scale up or down in 
response to changing demands. This scalability is achieved by 
adding or removing resources from the available pools. 

 

Automation and 
Orchestration 

Automation is a central principle of composable infrastructure, 
enabling the execution of predefined tasks and workflows 
without manual intervention. 

Orchestration coordinates the allocation and configuration of 
resources to meet specific requirements. 

Resource Efficiency 

 

Aims to optimize resource utilization, minimizing waste and 
underutilization. By efficiently allocating resources so the 
organizations can reduce both capital and operational costs. 

Flexibility and 
Adaptability 

Flexibility and adaptability are key principles, ensuring that the 
infrastructure can respond to changing business conditions and 
technology requirements. 

Interoperability 

Ensures interoperability, enabling different systems, devices, 
and applications to work together seamlessly. This principle 
supports the integration of various technologies and platforms, 
allowing for cohesive operation and communication across 
diverse environments. This is achieved using open standards, 
protocols, and APIs, enabling integration across heterogeneous 
environments and fostering a cohesive ecosystem. 

  



 

   
 

6. Implementation Strategy & Practical Considerations 
for Real-World Adoption 

The successful implementation of a data center observability platform requires more 
than selecting technical components or deploying agents. It is a cross-disciplinary 
endeavor involving infrastructure engineering, operations management, regulatory 
compliance, platform governance, and strategic business alignment. Organizations 
differ in maturity, architecture, and constraints - hence, a single prescriptive approach is 
neither feasible nor desirable. 

This section provides a practical, adaptable framework that enables organizations, 
whether operating a hyperscale data center or a hybrid co-location site, to craft their 
own observability roadmap. The guidance herein is not tool-specific, but concept-
driven, combining technical realism, organizational foresight, and regulatory awareness. 

Rather than asking "What tool should I deploy first?", we encourage stakeholders to 
ask: 

- What decisions must be observable to improve outcomes? 
- Which teams rely on telemetry for critical processes? 
- How to connect data collection with governance, compliance, and strategic 

impact? 

We address a broad spectrum of roles: 

- Operators will need guidance on integrating telemetry with timely workflows. 
- Architects will need information on how to design resilient, layered observability 

stacks. 
- Compliance teams will need aid on how metrics map to regulatory obligations. 
- Executives will need insight into how observability supports business continuity 

and ESG targets. 

The subsections below follow a maturity-aware progression, designed to help any 
organization assess its context, map capabilities, structure architecture, and ensure 
long-term alignment between systems, users, and regulatory demands. 

6.1 Organizational Readiness – Contextual definition  
Before deploying any observability platform, organizations must prepare beyond just 
infrastructure and software readiness. The success of observability depends on whether 
the organization is structurally and strategically aligned to use it effectively. This means 
clarifying who owns what, what compliance obligations exist, and how observability 
insights will influence real decisions. 



 

   
 

This section introduces a foundational lens to assess readiness. Rather than rushing 
into tool selection or protocol integration, stakeholders should examine internal 
alignment across technical, organizational, and compliance domains. 

Design Insight: An observability platform implemented without organizational 
readiness risks becoming an underutilized data silo. Without clarity on thresholds, roles, 
and escalation paths, alerts may be ignored, and telemetry may never reach the right 
decision-makers. 

Framing Questions by Dimension 

The table below offers a guided peek to facilitate cross-functional discussions. Each 
dimension uncovers crucial insights that determine whether observability will be useful 
or merely visual. 

Dimension Guiding Questions Why It Matters 

Organizational 
Who owns the racks, PDUs, and 
EMUs? Who approves observability 
changes? 

Clarifies accountability and 
change control boundaries. 

Technical 
What telemetry exists today? Which 
protocols (e.g., SNMP, Redfish) are 
supported? 

Informs tool compatibility 
and defines the potential 
data pipeline. 

Process 
Are there defined alert thresholds? Is 
there a CMDB integration or an 
incident response process? 

Ensures observability aligns 
with operational workflows. 

Compliance 
What regulations apply (e.g., EED, 
CSRD)? What metrics must be 
tracked or reported? 

Enables early planning for 
regulatory alignment and 
audit readiness. 

Data Maturity 
Are there consistent naming 
conventions? Is the asset metadata 
clean, current, and structured? 

Supports accurate alerting, 
filtering, and long-term 
automation. 

End Users 
What do different user groups (e.g., 
operations, planning, compliance, 
executives) expect to see or act on? 

Ensure dashboards and 
alerts are purpose-built, not 
generic. 

 

Example: Multi-Stakeholder Kickoff in a Co-Located Environment.  

In a large-scale co-located facility shared by multiple clients, observability readiness 
begins with determining who owns what equipment and telemetry rights. If the hosting 
provider controls the infrastructure but tenants demand energy visibility, the 
observability platform must be positioned as a shared service with clear data contracts. 



 

   
 

Organizational Need: Align co-location operator and tenant expectations. 

Compliance Need: EnWG in Germany mandates transparency for facilities ≥ 500 kW. 

Process Alignment: Establish shared incident flows and visibility scopes for tenant 
dashboards. 

Maturity Reflection 

Even sophisticated organizations may have gaps. 

For example: 

- Is telemetry polled but unused due to lack of thresholds? 
- Do security teams have visibility into telemetry access control? 
- Does procurement know which assets can produce observability data? 

Operational Implication: Readiness assessments often uncover unowned telemetry 
devices that produce useful metrics but are not mapped to any team’s responsibility. 
Making these relationships explicit is a critical precondition for platform sustainability. 

6.2 Implementation Planning Framework  
Data center observability cannot be treated as a plug-and-play deployment. It is a 
strategic capability that matures over time through structured planning, iterative 
deployment, and continuous refinement.  

This section introduces a four-phase implementation framework designed to help 
stakeholders translate strategy into actionable delivery while accommodating                
site-specific realities, tooling constraints, and evolving regulatory demands. 

The framework is flexible enough to suit diverse organizational profiles—from a single-
edge site to multi-region enterprise networks—yet anchored in universal 
implementation disciplines such as governance, telemetry alignment, and value 
mapping. 

We propose organizing the implementation into four tightly interlinked phases. These are 
not simply sequential steps, but interdependent cycles that may iterate as business 
needs and technical capabilities evolve. 

Phase Objective 

1. Contextual 
Definition 

Clarify the intent, operational boundaries, and business drivers of 
the observability initiative. 

2. Capability 
Assessment 

Map the current-state telemetry environment, available protocols, 
and data quality baselines. 



 

   
 

3. Platform 
Architecture 

Define the logical structure, governance model, data flows, and 
integration touchpoints. 

4. Operational 
Integration 

Embed observability into daily operations, compliance frameworks, 
and long-term planning cycles. 

 

Each phase is elaborated in more detail below with corresponding examples and 
success criteria. 

6.2.1 Phase 1 Contextual Definition 

Goal: Define the “Why,” “What,” and “Who” 

The first phase addresses intentionality: What problems are we solving? Who benefits? 
What outcomes define success? 

Key Activities: 

- Use Case Mapping: Examples include power monitoring at the socket level, 
ambient temperature alerts, or firmware drift detection. 

- Stakeholder Alignment: Identify data consumers and sponsors—data center 
ops, cloud platform teams, RunOps/NOC, sustainability, finance. 

- Driver Analysis: Define the legal, operational, or strategic reasons behind the 
platform. These could include EU regulatory compliance, internal audit 
mandates, or uptime SLAs. 

Practical Tip: Use a stakeholder canvas to record expectations, risks, and 
dependencies for each stakeholder group. This prevents technical solutions from 
outpacing organizational needs. 

Example: In a newly built data center intended to serve regulated industries, the primary 
business driver may be auditability of temperature and energy metrics. Thus, 
observability success is measured by compliance report generation, not only uptime 
visualization. 

6.2.2 Phase 2: Capability Assessment 

Goal: Understand Your Starting Point 

Before architecture decisions, understand what telemetry already exists, its reliability, 
and how to integrate it. 

This phase evaluates the technical landscape to determine telemetry potential and 
integration feasibility. 

It includes: 



 

   
 

• Asset Taxonomy: Classification of PDUs, EMUs, sensors, devices and racks 
based on telemetry exposure (SNMP v3, Redfish, etc.). 

• Protocol Compatibility Mapping: Identification of supported communication 
protocols and data export mechanisms. 

• Data Availability and Quality: Review of existing naming conventions, time-
stamp policies, and data completeness. 

Example: In a multi-vendor environment with legacy PDUs supporting only SNMP v2c, a 
transformation plan may involve standardizing telemetry through intermediate 
collectors with normalization logic. 

6.2.3 Phase 3: Platform Architecture 

Goal: Define the Engine Behind Observability 

This phase lays the foundation of how telemetry is ingested, transformed, stored, 
enriched, visualized, and acted upon. 

The observability stack is logically structured to enable modularity, scalability, and 
traceability. 

Key considerations include: 

• Data Ingestion Design: Use of collectors (e.g., Telegraf, OpenTelemetry) to 
receive telemetry, normalized via schema enforcement. 

• Contextual Enrichment: Tagging of data with asset metadata (location, vendor, 
lifecycle stage) from an authoritative CMDB. 

• Data Tiering: Categorizing telemetry into operational, compliance-critical, and 
archival layers. 

• Governance Principles: Ownership of thresholds, alert rules, and lifecycle 
policies across domains. 

Best Practice: The architecture should separate telemetry tiers (e.g., operational alerts 
vs. sustainability reports) and use metadata to drive filtering and alert scoping. 

Example: For operations, architectural uniformity is maintained via GitOps-based 
deployment, with localization handled through metadata-driven dashboards and region 
& system-specific alert profiles. 

6.2.4 Phase 4: Operational Integration 

Goal: Make Observability Actionable and Sustainable 

No observability platform is complete until it is used by actual stakeholders and 
supports real-world decisions. 

The final phase ensures the observability platform is embedded in workflows and 
contributes to business continuity, strategic planning, and regulatory readiness. 



 

   
 

Key Practices include:  

- Alert Management: Integration with incident management systems (e.g., 
Ticketing), including role-based escalation paths. 

- Drift Detection: Periodic comparison of real-time telemetry with desired state 
declarations in the CMDB. 

- KPI Reporting: Automated export of PUE, renewable share, energy footprint per 
zone, mapped to EU regulatory requirements. 

- Audit Support: Immutable logs, version-controlled configurations, and change-
tracking systems enable compliance with ISO 27001, NIS2, and CSRD. 

The implementation framework is not about technology first - it's about context, 
alignment, and structured deployment. Without a shared purpose and maturity-aware 
approach, observability risks becoming fragmented or underused. 

6.3 Implementation Scenarios 
Not all organizations begin their observability journey from the same starting point. 
Infrastructure age, protocol diversity, organizational structure, regulatory demands, and 
internal capabilities all shape what is possible, and what is pragmatic. 

This section presents two perspectives on implementation scenarios: 

Maturity Progression (“Crawl–Walk–Run–Fly”): How organizations typically evolve 
over time in observability sophistication. 

Situational Profiles: Representative deployment conditions (e.g., legacy, greenfield, 
sustainability-driven) and how observability must adapt accordingly. 

By structuring implementation scenarios in this dual view, we help organizations 
benchmark where they are and plan realistic next steps. 

6.3.1Maturity Scenarios – How to Grow Over Time  

Stage Telemetry Scope Process Maturity Business Impact 

Crawl 
PDU and temperature 
data from a single site, 
basic SNMP polling 

Manual threshold 
checks, no CMDB 
linkage 

Partial visibility, limited 
response automation, 
frequent alert fatigue 

Walk 
Socket-level and EMU 
telemetry across 
multiple sites 

Initial CMDB 
integration, static alert 
rules, basic tiering 

Improved regional 
oversight, SLA 
monitoring, reduced 
noise 

Run End-to-end telemetry: 
PDUs, racks, sensors, 

Role-based access, 
CI/CD pipelines, 
structured escalation 

Predictive maintenance, 
SLA & ESG conformance, 
continuous improvement 



 

   
 

firmware, configuration 
drift detection 

Fly 

Cross-site analytics 
with ML, timely signal 
enrichment, full 
compliance 
instrumentation 

GitOps observability, 
closed-loop 
automation, regulation-
aware dashboards 

Enterprise-wide energy 
optimization, adaptive 
compliance, business-
aligned observability 

 

NOTE: Each stage introduces new system dependencies (e.g., data enrichment at 
“Walk” requires CMDB reliability), and new stakeholders (e.g., ESG officers become 
relevant at “Run”). The maturity journey is as much about governance and culture as it is 
about data pipelines. 

6.3.2 Implementation Conditions – Real-World Scenarios 

These scenario profiles reflect real-world deployment challenges and constraints, 
helping clients frame observability in a practical, context-sensitive way. 

Scenario Characteristics Observability Focus 

Legacy Co-Location 
Environment 

Older hardware, limited 
SNMPv2 support, manually 
maintained asset records 

Establish a minimum 
viable telemetry, normalize 
inputs, enable socket-level 
alerting with collector 
throttling 

Greenfield Deployment 
(Edge or Cloud) 

Brand-new build, Redfish 
and OpenTelemetry native, 
KPI-driven design 

Implement full 
observability stack from 
day one, enforce 
structured tagging, track 
renewable energy input 

Multi-Tenant DC with SLA 
Commitments 

Shared infrastructure, 
customer-specific SLAs, 
carbon tracking required 

Tenant-tagged telemetry 
streams, SLA-aware alerts, 
customer-facing 
dashboards, traceable KPI 
histories 

Sustainability Compliance 
Site 

Subject to EU taxonomy, 
water, cooling, and 
renewable targets 

Integrate facility data, 
enforce ESG metric 
capture, link drift detection 
with sustainability controls 

 

Clarification: 



 

   
 

- Legacy scenarios often require architectural compromises (e.g., less frequent 
polling, read-only integrations). 

- Greenfield builds offer ideal conditions for reference architecture deployment 
but also carry a blank-sheet burden - no legacy constraints, but also no 
institutional experience or historical data. 

- Multi-tenant environments introduce the challenge of data segmentation, 
ensuring observability is actionable and compliant for each tenant without 
risking leakage or misattribution. 

- Sustainability sites push observability beyond IT into facility, energy, and ESG 
domains, demanding interoperability with non-standard systems (e.g., chillers, 
water meters, or power purchase agreements). 

Best Practice: Organizations operating under multiple conditions (e.g., a mix of legacy 
and edge sites) should define site-level observability tiers. Each site is then monitored 
according to its own capabilities and strategic value, avoiding one-size-fits-all 
deployments. 

6.4 Observability Success Drivers 
An observability platform’s value is not defined merely by its tooling or data ingestion 
rates. True success is measured by its ability to align with organizational goals, 
regulatory demands, and operational realities. This section highlights the underlying 
drivers that determine whether observability efforts scale from pilot projects to 
institutionalized platforms. 

These drivers are not “features”, they are architectural and governance enablers that 
define the sustainability, relevance, and impact of observability across the enterprise. 

The effectiveness of implementation is driven by several organizational and structural 
success drivers: 

Driver Why It Matters How to Implement 

Telemetry–CMDB 
Convergence 

Context-aware insights, 
root cause analysis 

Bi-directional sync with 
CMDB, enriched alerts 

Granularity by Purpose Cost-efficient and 
actionable monitoring 

Align polling intervals and 
retention per use case 

Lifecycle Governance Compliance, auditability, 
clarity 

Define policies for data 
tiers, access roles, and 
version control 

Stakeholder Visibility Adoption and operational 
value 

Role-specific dashboards 
and reporting outputs 



 

   
 

Data Health Monitoring Integrity, trust, quality 
assurance 

Automated anomaly 
detection on telemetry 
pipelines 

 

6.4.1 Telemetry-CMDB Convergence 

Aligning live data with asset metadata ensures consistency, drift detection, and 
accurate alerting. Observability becomes fragile when telemetry exists without 
metadata context. 

Example: Socket-level power readings are useful, but without knowing which rack, 
which team, or which environment the data belongs to (via the CMDB), the insight is 
incomplete. 

Best Practice: 

• Ensure every telemetry stream is mapped to a canonical asset in the CMDB 
• Enable bi-directional sync so that configuration changes (e.g., PDU swap) update 

telemetry logic automatically. 
• Use CMDB tags (e.g., lifecycle stage, business unit, vendor) to enrich alerts and 

support role-specific dashboards. 

6.4.2 Granularity by Purpose 

Tailoring data collection depth to the use case (e.g., rack-level for capacity vs. zone-level 
for compliance). Not all metrics require the same level of precision or frequency. 

Example: A rack-level temperature reading might suffice for compliance, but socket-
level load data is necessary for incident prevention. 

Consideration: 

• Granular telemetry (e.g., socket load every 5 seconds) can be valuable, but 
expensive to store and analyze. 

Align granularity and retention policies with the purpose: 

• Regulatory → summarized and archived 
• Operational → real-time and short retention 
• Predictive → enriched with tags, used for training models 

6.4.3 Lifecycle Governance 

Retention, archival, and access policies ensure observability aligns with regulatory and 
operational norms. A successful observability platform has clear policies for: 

• Retention: How long is the telemetry kept? 
• Archiving: Which data is rolled up? Which data is deleted? 



 

   
 

• Access: Who can view or modify dashboards? Who owns the configuration? 
• Versioning: Are dashboard and schema changes tracked? 

NOTE: This is especially critical in regulated environments, where reporting periods and 
audit trails are mandatory. Many organizations fail audits not because they lack the data, 
but because they cannot prove its completeness or origin. 

6.4.4 Ease of Use 

Role-specific dashboards and controls support both technical users and executive 
sponsors. A technical sound platform is irrelevant if its output is unreadable to key 
stakeholders. 

Success Factor: 

• Tailor dashboards, alerts, and reports to audience needs: 
• DC Ops → root cause analysis 
• Procurement → utilization reports 
• Sustainability → CO₂ per rack 
• Executives → compliance and ROI summaries 

Good observability is not about showing everything, it is about showing the right thing to 
the right person in the right format. 

EXAMPLE: A capacity planner might want phase balance per row over time, while a 
sustainability officer needs to aggregate kWh per building per month with renewable 
split. 

6.4.5 Trust and Data Health Monitoring  

Even the best observability platform must observe itself. 

Critical Practices: 

• Monitor data gaps, unexpected value patterns, and telemetry volume anomalies. 
• Alert on schema violations (e.g., missing timestamps, invalid tags). 
• Track pipeline drift, where enrichment logic may silently fail due to upstream 

changes. 

This is the foundation of trustable observability - systems where telemetry is not just 
ingested, but audited and verifiable.  

6.5 Interoperability and Compatibility Considerations 
Interoperability is not just a technical challenge - it is a business enabler. As data 
centers evolve into federated, compliance-driven, and customer-facing ecosystems, 
ensuring compatibility across heterogeneous systems becomes foundational to 
platform sustainability and auditability. 



 

   
 

Modern data center environments are characterized by their diversity: multiple vendors, 
evolving firmware baselines, protocol mismatches, and coexistence of legacy and next-
generation equipment. An observability platform must therefore not only operate across 
this heterogeneity, but it must also bridge it intelligently. 

In large-scale, multi-vendor, or hybrid data center environments, interoperability and 
compatibility are not nice-to-haves they are essential for platform viability.  

Observability needs to: 

• Diverse protocols and data formats 
• Varying firmware maturity and telemetry granularity 
• Mixed ownership models (e.g., co-location, cloud edge, internal IT) 

This section outlines how to ensure technical interoperability while minimizing 
fragmentation, avoiding data silos, and achieving coherent visibility across 
heterogeneous infrastructure. 

6.5.1 Protocol Interoperability 

Data centers contain devices with vastly different capabilities from 10-year-old 
SNMPv2c PDUs to next-gen servers supporting Redfish and OpenTelemetry. 

While modern architectures may favor Redfish or OpenTelemetry, SNMP remains 
dominant in legacy and co-location environments. This duality requires observability 
platforms to be “bilingual” - capable of ingesting structured, modern APIs while 
gracefully handling older, less secure formats. 

Telemetry data is typically sourced from devices supporting a mix of: 

SNMP (v2c, v3): Ubiquitous but varies in implementation and security (v3 preferred for 
encryption/authentication). 

Redfish API (REST-based): Common in newer hardware for power/thermal telemetry. 

OpenTelemetry: Typically used for application-level metrics but increasingly relevant 
for infrastructure observability. 

Custom REST APIs: Proprietary interfaces exposed by vendors or co-location providers. 

Syslog & SNMP Traps: Event-driven telemetry requiring near-real-time ingestion logic. 

Best Practice: Implement an abstraction layer in the ingestion pipeline that 
standardizes input (e.g., Telegraf → Logstash → Unified Schema) to decouple 
downstream systems from protocol-specific behavior. 

6.5.2 Semantic Compatibility & Data Normalization 

Protocol support alone does not guarantee interoperability. Semantic mismatches, 
where identical metrics are labeled, formatted, or timestamped differently, are a leading 



 

   
 

cause of faulty alerts, data duplication, and operator confusion. This subsection 
illustrates how to bring coherence across a fragmented telemetry landscape. 

Mismatch Type Example Mitigation Strategy 

Unit inconsistency Power reported in W vs. kW Normalize during ingestion 
using a predefined 
transformation dictionary 

Inconsistent naming pdu_socket_01_kwh vs 
Outlet03_Consumption 

Enforce naming schema 

Timestamp granularity Millisecond precision in 
one device, 30s polling in 
another 

Align to a reference clock. 
assign collection 
timestamp if native 
timestamp is missing 

Firmware metric drift New firmware exposes 
different OID trees or 
changes field semantics 

Maintain a compatibility 
registry by device model + 
firmware in CMDB 

 

6.5.3 CMDB Integration for Source Consistency 

A mature CMDB is not just a passive inventory - it becomes an active compatibility 
broker.  

CMDB Responsibilities: 

• Store metadata such as: 
o Supported telemetry protocols 
o Device model and firmware version 
o Ownership, SLA level, and business-criticality 

• Track configuration drift: actual vs. expected telemetry behaviors 
• Define which devices can and should be polled for specific metrics 

Example: Before enabling phase load monitoring, the platform checks in CMDB whether 
the device: 

• Supports SNMP v3 
• Has phase metrics enabled in the current firmware 
• Belongs to a site with advanced analytics enabled 

This ensures intentional monitoring, not blind data scraping. 

Real-World example: In one software-operated site, CMDB was extended to include 
firmware compatibility metadata. This enabled ingestion pipelines to auto-select polling 



 

   
 

templates based on device model, reducing false alerts by 38% and speeding up 
onboarding of new devices by 62%. 

6.5.4 Interoperability with Enterprise Systems 

Observability platforms are not islands. They must interoperate with enterprise systems 
for incident management, compliance, and analytics. 

Example Integration points:  

System Function Integration Method 

Alerting Incident & change 
management 

REST API, CMDB sync, 
ticketing 

GRC Platforms Governance, risk, 
compliance 

Reporting pipeline or 
export 

Observability layer and 
correlation engine Data lakes, trend analysis Logstash → Elasticsearch 

forwarding 

CI/CD Observability-as-code GitHub Actions, Helm, 
Terraform 

SIEM Security incident detection Syslog forwarding, log 
tagging 

Data Visualization (e.g., 
Kibana) 

Dashboards for 
stakeholders 

Elasticsearch sync, 
metadata tagging 

 

Regulatory Relevance: EU reporting regulations (e.g., EED, CSRD) increasingly 
mandate interoperability - e.g., the ability to export metrics in standardized formats 
(JSON, CSV, XML) to government databases or auditors. 

6.5.5 Legacy and Vendor-Locked Devices 

In real-world environments, total compatibility is rare. A platform must offer graceful 
degradation: 

• For non-instrumented racks: Use metadata tagging only 
• For legacy SNMPv2c: Poll via gateway collectors with throttled frequency 
• For proprietary systems: Request vendor integration plugins, or treat as passive 

data sources 

Strategic Guidance: Maintain a "telemetry tier" classification: 

Tier 1: Fully instrumented with real-time polling and event support 

Tier 2: Partially instrumented or legacy-polled with relaxed alerting 



 

   
 

Tier 3: Inventory-only, requiring manual data entry or offline updates 

Summary of Compatibility Challenges & Mitigations 

Challenge Mitigation 

Protocol mismatch Collector abstraction layer, protocol 
tagging 

Semantic drift Normalization schema, CMDB 
enforcement 

Firmware inconsistency Compatibility matrix, ingestion validation 

Legacy devices Tiered telemetry model, passive tagging 

Regulatory exports Format standardization, audit logging 

 

As industry moves toward unified observability fabric standards (e.g., OpenConfig, 
DMTF Redfish extensions), platform architecture should anticipate convergence. 
Investing in modular, schema-aware ingestion and CMDB-driven normalization will not 
only ease today’s interoperability issues but also position the platform for adaptability 
as standards evolve. 

6.6 Practical Adoption Tips by Stakeholder Type 
The success of an observability platform is not solely contingent upon its technical 
sophistication. Equally critical is the diverse roles that engage with, govern, and depend 
on the platform outputs. From data center operators to executive leadership, 
stakeholders have distinct concerns, expectations, and success criteria.  

This section provides a structured overview of how different stakeholder groups can 
interpret, adopt, and benefit from observability - highlighting practical considerations, 
decision factors, and real-world enablers. Rather than presenting generic best 
practices, we translate stakeholder needs into implementation touchpoints that 
enhance relevance, foster alignment, and ensure long-term adoption. 

6.6.1 Data Center Operations Teams 

For facility engineers and on-site operations staff, observability must move beyond 
passive monitoring and become a tool for proactive management.  

Their primary interests often include: 

• Fault detection and resolution (e.g., thermal hotspots, circuit imbalances) 
• Capacity and load forecasting 



 

   
 

• Compliance with operational SLAs (e.g., temperature, uptime, power safety 
thresholds) 

Operational Consideration: Operators require telemetry that is both granular and 
actionable. Socket-level monitoring is valuable only when paired with intuitive 
dashboards, actionable alert thresholds, and clear escalation paths. 

Adoption Enabler: Co-locate observability dashboards, integrate alert flows into 
NOC/RunOps workflows, and avoid data overload by filtering to role-specific signals 
(e.g., only alerts triggered in the operator site zone). 

Example: In one regional hub, timely energy telemetry helped an operator detect that 
redundant power strips were being underutilized. Through minor rack layout changes, 
they achieved 8% better load balancing, reducing thermal hotspots and risk of breaker 
trips. 

6.6.2 Platform and Infrastructure Architects: Designing for Modularity and 
Scalability 

Infrastructure architects must ensure that observability stacks are modular, 
maintainable, and adaptable across heterogeneous environments. 

Their focus is strategic and structural: 

• Integration patterns (e.g., GitOps, CI/CD observability-as-code) 
• Modular component selection (e.g., choosing Telegraf over custom scripts) 
• System-level consistency across sites and platforms 

Architectural Concern: Observability solutions that are hardcoded to local 
configurations or lack clear modularity quickly become technical debt. Architects must 
define common schemas, telemetry pipelines, and governance layers to avoid 
fragmentation. 

Adoption Enabler: Provide reference implementations, validate platform components 
via architecture review, and ensure observability aligns with existing DevOps and 
platform operations frameworks. 

Example: In a distributed setup spanning co-location and edge data centers, the 
architect enforced a shared metadata taxonomy (via CMDB) to ensure that all telemetry 
adhered to a consistent format. This unlocked cross-site analytics and reduced 
integration issues across observability layers. 

6.6.3 Compliance and Sustainability Officers: Verifiability, Traceability, and 
Audit-Readiness 

For compliance stakeholders, observability is not just a technical capability - it is a 
regulatory instrument. Their primary interest is proving that operations adhere to legal 



 

   
 

and environmental standards, such as the European Energy Efficiency Directive (EED), 
Corporate Sustainability Reporting Directive (CSRD), or local energy codes. 

Compliance Challenge: Raw telemetry alone is insufficient for audits. Data must be 
time-stamped, normalized, and traceable back to physical infrastructure components 
and operating conditions. 

Adoption Enabler: Integrate observability pipelines with GRC systems and data export 
workflows. Use version-controlled dashboards for regulatory KPIs (e.g., PUE, renewable 
energy share). Establish clear data retention policies and immutable logs aligned with 
audit timelines. 

Example: At a sustainability-driven site in the EU, automated telemetry from PDUs and 
EMUs was combined with facility sensor data to generate monthly Scope 2 emissions 
reports, directly fulfilling CSRD requirements for energy disclosure. 

6.6.4 Procurement and Asset Management: Lifecycle Intelligence and 
Capacity Planning 

Procurement teams benefit from observability through better lifecycle planning and cost 
efficiency. Knowing which racks are overprovisioned, underutilized, or aging helps 
inform purchasing decisions and contract renegotiations with co-location providers. 

Procurement Insight: Telemetry can be used to correlate usage patterns with asset 
lifespans, identify redundant equipment, and optimize refresh cycles. 

Adoption Enabler: Provide procurement with tailored dashboards (e.g., average power 
draw vs. rated capacity per vendor) and link telemetry data with asset inventory systems 
to enable financial forecasting and SLA optimization. 

Example: By analyzing load distribution across PDUs, one enterprise discovered 
consistent underutilization of a high-capacity rack zone. This insight enabled them to 
downscale their lease. 

6.6.5 Executive Leadership: Strategic Alignment and ESG Impact 

Executives are not typically interested in raw telemetry - but they are deeply invested in 
the business impact of observability. 

This includes: 

• Risk mitigation through early failure detection 
• ESG reporting credibility 
• Strategic facility expansion decisions 

Leadership Focus: Observability must communicate high-level narratives: “Are we 
compliant?”, “Are we efficient?”, “Are we at risk?” 



 

   
 

Adoption Enabler: Develop executive-level dashboards with quarterly trends, predictive 
forecasts (e.g., PUE projections), and regulatory alignment indicators. Link observability 
metrics to ROI (e.g., savings from deferred expansion, energy efficiency gains). 

Example: In a quarterly board meeting, telemetry insights supported a decision to defer 
data center expansion by showcasing how improved rack consolidation extended 
capacity greatly. 

6.7 Lifecycle Sustainability and Long-Term Maintainability 
Establishing an observability platform is not merely a technical milestone - it is the 
initiation of a governance lifecycle. Once deployed, the platform must remain 
adaptable, interpretable, and actionable in the face of organizational change, 
infrastructure evolution, regulatory updates, and shifting stakeholder priorities.  

This section outlines the major categories of sustainability risks and provides a forward-
looking framework to mitigate long-term degradation in observability platform relevance, 
performance, and trustworthiness. 

6.7.1 Understanding Sustainability in Observability Context 

Sustainability in observability refers not only to environmental considerations, such as 
minimizing storage and computing waste, but also to the organizational, procedural, and 
epistemic longevity of the platform. 

Key questions arise: 

• Will the system still make sense when key personnel depart? 
• Will telemetry continue to align with business needs as infrastructure evolves? 
• Will dashboards and alerting policies remain valid under new regulatory regimes? 

These questions frame observability as a dynamic system of knowledge, not just a static 
monitoring toolkit. Like any socio-technical system, observability requires active 
stewardship to remain resilient, interpretable, and valuable. 

6.7.2 Key Categories of Sustainability Risk 

Sustainability risks fall into six major domains, each with cascading operational 
implications: 

Risk Domain Description Typical Manifestation 

Telemetry Drift 

Device updates, firmware 
changes, or topology 
changes silently alter 
telemetry 

Values shift or disappear, 
dashboards become 
outdated 



 

   
 

Semantic Decay 
Misalignment between 
data meaning and 
stakeholder interpretation 

Dashboards are misread; 
alerts are misunderstood 

Governance Gaps 
No clear ownership of 
thresholds, policies, or 
platform evolution 

Alert noise increases, 
platform becomes siloed 

Tooling Fragmentation 
Parallel tools emerge with 
uncoordinated scopes or 
duplication 

Shadow monitoring 
solutions develop, wasted 
resources 

Regulatory Misalignment 
Legal frameworks evolve 
(e.g., CSRD, EED) but 
telemetry stays static 

Non-compliance, reporting 
failures 

User Disengagement 
Stakeholders stop trusting 
or using observability 
outputs 

Underused systems, 
reduced ROI, false sense 
of security 

6.7.3 A Sustainability Framework for Observability 

To proactively manage these risks, we propose a Sustainability Framework that 
integrates platform engineering with organizational learning and regulatory foresight.  

It consists of five interlinked principles: 

1. Temporal Validity of Telemetry 

Challenge: Device output change over time due to firmware upgrades or hardware 
replacements. 

Mitigation: Implement a telemetry validation pipeline that cross-checks incoming data 
against CMDB-logged expectations (e.g., OIDs, unit formats, update frequency). 

2. Intent Preservation via Metadata 

Challenge: Dashboards and alerts lose context if creators leave, or documentation is 
lost. 

Mitigation: Mandate metadata tagging for all observability assets (dashboards, alerts, 
transforms), capturing "why" alongside "what." For example, a tag like {"compliance-
metric": "EED-AnnexVII-1"} ensures intent persists. 

3. Embedded Governance Anchors 

Challenge: Without ownership models, observability becomes fragmented. 



 

   
 

Mitigation: Assign platform Product Owner (PO) role and domain-specific telemetry 
stewards. Require quarterly reviews of alert thresholds, metric utility, and system 
integration fidelity. 

4. Regulatory Horizon Scanning 

Challenge: Regulations change faster than platform updates. 

Mitigation: Link GRC (Governance, Risk, Compliance) workflows with observability 
design. Ensure dashboards are annotated with regulation-specific references (e.g., 
"CSRD-Scope3-CO2") to ease auditability. 

5. Participatory Review Mechanisms 

Challenge: Platforms drift if users are passive. 

Mitigation: Introduce structured feedback loops (e.g., observability retrospectives, 
design review boards). Create usage analytics to detect declining interaction and launch 
targeted re-engagement. 

6.7.4 Example: Sustainability Breakdown in a Multi-Site Data Center 

In one enterprise deployment, a leading European data center operator experienced a 
gradual erosion of observability value over 18 months. Initially laid for its socket-level 
energy insights, the platform suffered from the following: 

• Firmware upgrades invalidated 20% of SNMP-based metrics. 
• No one noticed missing data for 7 weeks due to absent meta-alerting. 
• New compliance rules (EU 2023/1791) required reporting formats unsupported 

by the system. 
• Stakeholders began exporting raw data to Excel for custom reporting, leading to 

shadow systems. 

A sustainability audit revealed that while telemetry ingestion was technically functional, 
governance, documentation, and intent alignment had eroded. A recovery plan was 
introduced involving metadata backfilling, CMDB validation automation, quarterly 
governance councils, and integration of legal compliance roles into the observability 
team. 

6.7.5 Strategic Recommendations 

To institutionalize sustainability, organizations should treat observability not as a 
finished product but as a living capability.  

Recommended practices include: 

Adopt Lifecycle Audits: Every 6-12 months, assess telemetry integrity, alert fidelity, 
stakeholder engagement, and regulatory alignment. 



 

   
 

Define an Observability Constitution: A lightweight policy artifact describing 
principles, thresholds for action, naming conventions, and governance roles. 

Bake Sustainability into Procurement: Require vendors to document telemetry 
support per firmware, including change policies and backward compatibility. 

Formalize Change Notifications: Connect firmware updates or site topology changes 
to alert platform stewards via CMDB triggers or ITSM workflows. 

Long-term observability success depends less on initial tooling selection and more on 
how well an organization governs, interprets, and adapts its telemetry ecosystem over 
time. Without proactive lifecycle management, even the most advanced observability 
stack will drift into obscurity, becoming a shelfware platform of latent potential. By 
embedding governance, metadata clarity, and regulatory responsiveness into the 
platform’s DNA, organizations ensure that observability becomes not just sustainable, 
but indispensable. 

6.8 Common Pitfalls and How to Avoid Them 
While the implementation of a data center observability platform promises enhanced 
transparency, resilience, and regulatory alignment, real-world deployments are 
frequently derailed by predictable, yet preventable failures. These missteps span across 
technical, organizational, procedural, and cultural domains. Understanding these 
pitfalls not only strengthens project outcomes but also builds institutional resilience 
against future disruptions. 

This section categorizes some of the most common implementation errors, analyzes 
their systemic roots, and provides structured mitigation approaches. It serves both as a 
diagnostic tool for ongoing projects and as a proactive planning guide for new 
observability initiatives. 

6.8.1 Pitfall №1: Technology-First Thinking 

Symptom: Stakeholders rush to deploy tools or protocols (e.g., SNMP polling or Redfish 
APIs) without clearly understanding business drivers, end-user needs, or compliance 
obligations. 

Underlying Cause: A bias toward solutionism, if technology alone will deliver value, 
irrespective of context. 

Impact: Misaligned data streams, unused dashboards, alert fatigue, and poor 
stakeholder adoption. 

Mitigation Strategy: 

• Conduct structured Contextual Definition workshops before choosing tools. 



 

   
 

• Translate platform goals into observable business decisions (e.g., “Are we 
exceeding PUE targets?”), not just technical metrics. 

• Involve compliance and operational stakeholders during the design phase, not 
just after deployment. 

Academic Insight: Technology without governance becomes entropy. In complex 
systems theory, emergent value arises not from individual nodes (tools), but from their 
structured interrelation, an idea as per the ideas of sociotechnical systems engineering. 

6.8.2 Pitfall №2: Over-Engineering in Immature Environments 

Symptom: Teams attempt to deploy fully integrated, real-time observability stacks in 
legacy or telemetry-poor environments. 

Underlying Cause: Aspirational design that ignores current-state limitations - e.g., 
SNMPv2-only devices, no CMDB integration, fragmented ownership. 

Impact: Technical debt accrues rapidly. Stakeholders lose trust as platform outputs do 
not reflect operational realities. 

Mitigation Strategy: 

• Use a maturity-based rollout model (see §6.3.1 Crawl–Walk–Run–Fly). 
• Build from minimum viable telemetry (MVT) upward: start with basic PDU polling 

and alert normalization. 
• Formalize a site capability map to match ambitions with reality. 

Academic Insight: System maturity must be scaffolded. Drawing from capability 
maturity models (e.g., CMMI), premature optimization is not only wasteful, but also 
structurally unsustainable. 

6.8.3 Pitfall №3: Ignoring Semantic Normalization 

Symptom: Metrics are collected in incompatible formats, units, or naming conventions 
across vendors and sites. 

Underlying Cause: Absence of data modeling, lack of shared vocabulary, and no 
enforced transformation logic. 

Impact: Visualization errors, alerting mismatches, broken compliance reports. 

Mitigation Strategy: 

• Establish a semantic schema for telemetry fields (e.g., voltage_phase_avg, 
power_draw_kw). 

• Normalize during ingestion (e.g., Telegraf → Logstash) using a transformation 
dictionary. 

• Leverage CMDB as a schema validation engine. 



 

   
 

Real-World Example: One organization failed to detect a power imbalance due to 
inconsistent OID mappings across firmware versions. Once normalization logic was 
introduced, the alert logic stabilized, and false positives dropped by 85%. 

6.8.4 Pitfall №4: Siloed Ownership and Governance Drift 

Symptom: No one "owns" the observability platform for post-deployment. Thresholds 
are outdated, dashboards unmaintained, and alerts misrouted. 

Underlying Cause: Observability is viewed as a project, not a living system requiring 
ongoing governance. 

Impact: Degradation of value, alert noise, compliance gaps, executive disengagement. 

Mitigation Strategy: 

• Establish long-term governance anchors (see §6.7.3), such as: 
• A Platform Product Owner (PPO) 
• Domain-specific telemetry stewards 
• Quarterly governance review cycles 
• Use a version-controlled observability repository (e.g., via Git) to track schema, 

alert, and dashboard changes. 

Academic Insight: From a systems governance perspective, unmaintained observability 
is analogous to unpatched infrastructure: vulnerable to drift, decay, and organizational 
amnesia. 

6.8.5 Pitfall №5: Treating Observability as a Technical Island 

Symptom: Observability is implemented in isolation, unintegrated with CMDB, ITSM 
platforms, GRC systems, or ESG reporting workflows. 

Underlying Cause: Lack of stakeholder alignment and architecture foresight. 

Impact: Duplicated effort, fragmented insights, inability to prove compliance or trigger 
operational actions. 

Mitigation Strategy: 

• Design for interoperability from the outset (see §6.5.4): 
• Link to ticketing platform for incident workflows 
• Forward metrics to ELK data Lake for compliance visualization 
• Integrate with GRC tools for audit readiness 

Document use-case-based system interdependencies (e.g., "power drift → alert → SNOW 
ticket → mitigation → CMDB update"). 

Academic Insight: The value of observability is not in seeing but in acting. From a 
cybernetic perspective, observability without actuation is only half a system. 



 

   
 

6.8.6 Pitfall №6: Underestimating Change Management and Training 

Symptom: Platform is technically functional but remains underutilized. Stakeholders 
bypass it using spreadsheets or custom scripts. 

Underlying Cause: Poor onboarding, lack of clarity, or fear of change. 

Impact: Shadow systems, fragmented data, platform abandonment. 

Mitigation Strategy: 

• Provide persona-based onboarding: different roles receive dashboards, alerts, 
and training tailored to their decisions and processes. 

• Launch continuous engagement programs: Office hours, internal champions, 
quarterly design jams. 

Real-World Observation: In a hybrid cloud operator, dashboard usage increased 4x 
after introducing role-specific landing pages and targeted walkthroughs using internal 
micro-learnings. 

6.8.7 Pitfall Awareness as a Strategic Advantage 

Avoiding failure is not simply about foresight - it is about institutional learning. The 
observability platform must evolve from being seen as a static deployment toward a 
resilient, governable, and socially adopted capability. The pitfalls outlined here are not 
isolated mistakes, they are systemic patterns. By recognizing them early and embedding 
countermeasures into design, implementation, and operational practice, organizations 
enhance not only their observability readiness but their overall digital resilience. 

Figure: Maturity vs Risk Heatmap  



 

   
 

 

6.9 Long-Term Sustainability & Continuous Improvement 
Deploying a data center observability platform is the foundation of a sustainable 
capability that must evolve alongside the organization’s infrastructure, regulatory 
obligations, and strategic goals. This section explores how to design for long-term 
relevance, avoid obsolescence, and institutionalize observability as a dynamic, value-
generating asset rather than a static technical deployment. 

6.9.1 The Lifecycle of Observability Platforms 

Sustainability in observability refers to the platform's capacity to remain accurate, 
relevant, and actionable over time. Like infrastructure itself, observability systems 
undergo phases: 

• Initialization: Configuration of the minimal viable telemetry and data ingestion 
infrastructure. 

• Operationalization: Integration with workflows, dashboards, alerting, and 
compliance reporting. 

• Optimization: Refinement of telemetry granularity, data tagging, and 
automation. 

• Evolution: Adaptation to new protocols, new equipment, and evolving 
stakeholder needs. 

To sustain these phases, organizations must shift from “deployment mindset” to 
observability governance. 

This includes: 



 

   
 

• Policy-based configuration management (e.g., via GitOps), 
• Governed change control over thresholds, alerting logic, and naming 

conventions. 
• Continuous validation of telemetry quality, coverage, and latency. 

Example: A telemetry field used in annual ESG reports should be version-controlled, 
auditable, and tested for semantic stability across firmware updates. Failure to do so 
risks non-compliance. 

6.9.2 Governance and Stewardship Models 

Sustainability is not possible without clear organizational ownership and distributed 
stewardship. Observability systems that lack governance often suffer from drift, 
duplication, or decay.  Successful models embed stewardship at three levels: 

Governance Level Responsibility Example Practice 

Strategic Sponsor budget and 
business value alignment 

ESG board defines 
reporting KPIs 

Tactical 
Enforce architectural 
standards and evolution 

Architecture Review Board 
approves ingestion 
schemas 

Operational Maintain dashboards, 
alerts, CMDB mappings 

NOC engineers refine alert 
thresholds quarterly 

 

A common pitfall is the “abandoned platform” syndrome - where telemetry is collected 
but never acted upon because ownership of alerts or metrics has not been assigned. 

Best Practice: Implement a Telemetry Ownership Matrix, mapping each signal or KPI to 
a business function and escalation path. 

6.9.3 Feedback Loops and Telemetry Refinement 

A sustainable platform incorporates mechanisms for continuous improvement through 
structured feedback. Observability is not a “set-and-forget” tool it must learn from 
experience. 

Effective feedback loops include: 

Post-incident analysis: Were alerts timely and actionable? 

Data quality audits: Are there silent failures in collection pipelines? 

Stakeholder reviews: Are dashboards still aligned with stakeholder needs? 



 

   
 

Capacity planning exercises: Is telemetry guiding infrastructure growth or 
underutilization? 

Practical Tip: Use quarterly “observability reviews” as part of operational governance 
boards, like budget or performance reviews to recalibrate thresholds, dashboards, or 
coverage areas. 

6.9.4 Obsolescence and Futureproofing 

Long-term sustainability requires systems to be designed with graceful evolution in 
mind. 

Key strategies include: 

Abstracted ingestion layers: Decouple data collection from analysis and storage to 
support protocol evolution (e.g., shift from SNMP to Redfish). 

Modular architecture: Ensure new telemetry sources or visualization layers can be 
added without refactoring core logic. 

Semantic versioning: Apply API-like discipline to metric formats, naming conventions, 
and dashboard schema. 

6.9.5 Metrics for Platform Sustainability 

Just as observability enables organizations to monitor their environments, the 
observability platform itself should be monitored and evaluated.  

Suggested sustainability KPIs include: 

Metric Description 

Telemetry Coverage Ratio Percentage of racks, PDUs, and sensors 
actively reporting 

Alert Fatigue Index Ratio of alerts resolved vs. ignored or auto 
closed 

Compliance Coverage Score Degree of alignment with required 
regulatory metrics (EED, CSRD, etc.) 

Data Pipeline Health Average ingestion latency, packet drop 
rate, schema adherence 

Dashboard Utilization Frequency of access and updates by 
defined stakeholder groups 

 

These metrics should themselves be visualized as part of a “platform health dashboard” 
that is reviewed quarterly. 



 

   
 

I.e. – Fig :  

 

This heatmap is visualizing the utilization frequency of various dashboard types by 
different stakeholder groups. The values (from 1 to 5) indicate how often each group 
engages with specific observability dashboards: 

• Operations and Engineering show the highest usage of power monitoring tools. 
• Sustainability and Compliance teams rely heavily on environmental monitoring 

and compliance reports. 
• Finance and Executives favor KPI dashboards and strategic insights. 

  



 

   
 

Appendix A  Use Cases 
This appendix consolidates use cases and technical implementation requirements for 
key areas of the observability infrastructure. 

A.1 Configuration management for monitored devices 
General guidelines: 

- Ensure appropriate version & change control processes are implemented (as 
outlined in Section 4.7) 

- Store configuration in common CMDB system 
o Keep CMDB entries up to date, ensuring it reflects appropriate physical 

placement and connections 
o Keep track of device level monitoring readiness e.g. in case of component 

replacement or introducing new hardware to the system report if usual 
monitoring configuration could not be applied (e.g. missing component / 
device model mismatch)  

- Use standardized configuration templates for all managed device types 
- Ensure configuration drift control measures are in place 

Configuration key items: 

Device identification information 

- System name (e.g. network hostname) - well known device identifiers used in 
CMDB system 

- Additional identification properties e.g. physical location information, ownership, 
device type 
o Applies also to the device modules / attached accessories e.g. environmental 

sensors 
- Network connection settings including supported IP protocols / Addressing / DNS 

server usage 
- Time & date configuration e.g. Network Time Protocol configuration 
- Appropriate operating system patches or firmware version control 

 

Security 

- Allowed access protocols (for both configuration and monitoring), depending on 
selected methods, e.g. 
o Minimum security specification for HTTPS access methods for REST APIs / 

Redfish endpoints 
o Appropriate SNMP protocol settings like versions, communities, encryption 

methods 
- Authentication 

o Local user accounts configuration / integration with centralized systems 



 

   
 

o MFA configuration 
- Authorization 

o Role based access control configuration – separating “administrator” and 
“monitoring” role 

- Auditing 
o Appling minimum security specification e.g. integration with SIEM tools 

whenever possible 
- Additional security hardening best practices 

o Ensuring not used services/features/access methods are disabled e.g. TFTP 
or Telnet servers 

Monitoring 

- Configure appropriate access methods to monitoring/telemetry data 
- Configure desired monitoring features are enabled in device settings e.g. 

environmental sensors data collection or outlet level data collection is turned on 
- Configure appropriate alerting thresholds 
- Configure alerting severity 
- Ensure monitoring agent/collector settings are in sync with monitored device side 

configuration e.g. appropriate addresses of SNMP Trap receivers / Redfish event 
subscription addresses are used in device-level configuration 

A.2 Power & environmental metrics visualization 

General guidelines: 

- Whenever possible use version-controlled visualization engine and follow 
standard change control procedures 

- When creating breakdowns or filters use appropriate set of tags to ensure right 
metric representation, keeping in mind relationships between objects (e.g., 
breaker metrics for single PDU in given rack would be identified at least by tags: 
host, hw.parent and hw.name/hw.id) 

o This applies also for visualization of event data like error logs or SNMP trap 
data 

- Apply appropriate color-coding to indicate primary / secondary (backup) power 
source (as indicated by appropriate resource tagging and/or taken from device 
naming convention) 

- When visualizing multiple metrics on single dashboard ensure color coding is 
consistent for common set of tags 

- Indicated threshold/classes/boundaries on graphs should use well-known 
values, desirably taken from monitoring (e.g., device power limits) or CMDB 
system (location specific limits, forecasted values) 



 

   
 

Observability infrastructure dashboard 

Provides an overview of monitoring infrastructure, providing information with 
agent/collectors statuses, number of collected metrics, and error rates. 

- Monitoring infrastructure errors view e.g., containing sync issues with CMDB 
system, unhealthy instances 

- Metric collection errors time chart, grouped by monitoring agent/collector 
instance 

- Collection error rate per monitored device 
- If applicable – metrics analysis/persistence layer errors per instance of 

agent/collector 

Rack dashboard 

Provides detailed view of a rack, providing information useful for day-to-day operations, 
including the most detailed data from PDU units including phase power, outlets, and 
breakers. 

- Current device state, “at-glance” overview for active alerts, power devices & 
their component statuses 

- PDU (true) power (kilowatts) & apparent power in time chart view if possible 
visual comparison with device rating limits and forecasted values. 

- PDU hourly energy consumption in time chart view if possible visual 
comparisons with forecasted values. 

- Power Phase power (kilowatts) & apparent power (kilovolt-ampere) in time 
chart view 
PDU Breakers data breakdown (table) - side-by-side comparison with primary 
& secondary (backup) feed including peak current, current rating 

- PDU Outlets data breakdown  (table) - side-by-side comparison with primary 
& secondary (backup) feed including: braker relationship, peak true & 
apparent power, peak current, outlet current rating  

- Environmental sensor data: 
Temperature & humidity time charts, breakdown over sensor location, with 
ASHRAE recommendations indication (e.g. appropriate area coloring). 

Datacenter room dashboard 

Provide detailed view for datacenter rooms, to provide summarized PDU & rack data for 
given physical location (usually sharing cooling and power sources). 

- Power data summary for PDUs as time chart – visual comparison with 
forecasted values 

- Peak environmental sensor values, breakdown over rack & sensor location – 
with room averages (“at-glance” overview for peak values for selected period) 



 

   
 

Datacenter room heatmaps 

Provide environmental sensor data visualization with related infrastructure (e.g., racks, 
cages. hot/cold containment zones) including spatial information in 2D/3D view 
(depending on availability of the data and integration with CMDB systems). 
Gradient colors should reflect local SLA classes, e.g., using ASHRAE data center 
thermal guidelines, starting with yellow when exceeding “recommended thresholds, 
turning red when approaching “allowable” boundaries. 

- Temperature gradient breakdowns depending on sensor location (front/rear 
and/or bottom/middle/top) 

- Humidity gradient breakdowns depending on sensor location (front/rear 
and/or bottom/middle/top) 

 

  



 

   
 

Appendix B: Software Bill of Materials (SBOM) 
This appendix provides a comprehensive Software Bill of Materials (SBOM) for the open-
source components utilized within the Data Center Observability Platform (including 
Aperio components), as defined by the blueprint. It ensures transparency, traceability, 
and compliance with the sustainability and interoperability objectives outlined in this 
blueprint. 

Only open-source or open-standard components have been included to support 
principles of modularity, openness, and composability, while minimizing vendor lock-in. 

B.1 Methodology 
• Implementing Apeiro Reference Architecture 
• Utilizing components provided by Aperio management plane (Greenhouse) 
• Identification of all foundational and integration platform elements. 
• Validation of open-source licensing for each component. 
• Mapping functional roles to logical architectural layers. 
• Alignment with regulatory, operational, and sustainability drivers. 

B.2 Component Overview 

Component Function within 
Architecture 

Open-Source 
License Notes 

Kubernetes -  
Gardener 

Orchestration of 
containerized 
observability 
services 

Apache 
License 2.0 

Gardener extends to 
native Kubernetes. 
Apeiro cloud-edge layer 
component 

Greenhouse 

Orchestration of 
observability 
components in 
distributed 
environment 

Apache 
License 2.0 

Orchestration of 
distributed Kubernetes 
infrastructure. 
Apeiro management 
plane component 

OpenTelemetry 
Collector 

Aggregation and 
export of telemetry 
data (metrics, logs, 
traces) 

Apache 
License 2.0 

Vendor-agnostic 
telemetry 
instrumentation. 
Main Apeiro 
Observability 
component (managed by 
Greenhouse) 

Telegraf SNMP polling agent 
for environmental MIT License Supports direct ingestion 

from PDUs and sensors. 



 

   
 

and power 
telemetry 

NetBox 
CMDB and device 
metadata 
management 

Apache 
License 2.0 

Key for asset-to-
telemetry mapping. 

Perses Visualization / 
dashboarding 

Apache 
License 2.0 

Metrics visualization 
platform (managed by 
Greenhouse) 

Prometheus & 
Thanos 

Metrics collection, 
storage and alerting 

Apache 
License 2.0 

Thanos extending 
Prometheus functionality 
with long term metrics 
storage 
(managed by 
Greenhouse) 

OpenSearch 
Storage, search, 
analysis and 
visualization 

Apache 
License 2.0 

Event storage, data 
visualization and 
analysis 
(managed by 
Greenhouse) 

SNMP Libraries 
(e.g., PySNMP, 
GoSNMP) 

Communication 
with PDUs, EMUs, 
sensors 

BSD/MIT 
Licenses 

Enables polling and trap 
handling for device 
telemetry. 

Redfish API Clients 
(optional 
integration) 

API access for 
environmental and 
power telemetry 
from hardware 

DMTF Open 
Specification 

Optional based on 
hardware support. 

 

B.3 License Summary 

License Type Components Governed Compliance 
Considerations 

Apache License 2.0 

Gardener, Greenhouse, 
Kubernetes, 
OpenTelemetry, Netbox, 
Perses, Prometheus, 
OpenSearch, Thanos 

Permissive; modification, 
distribution allowed with 
attribution. 

MIT License Telegraf, SNMP libraries Very permissive; minimal 
obligations. 



 

   
 

Elastic License (OSS 
Version) 

Elasticsearch OSS, 
Kibana OSS 

OSS versions must be used 
to avoid commercial 
licensing restrictions. 

AGPLv3 Grafana 
Strong copyleft license; 
acceptable under open-
source goals. 

OpenAPI / REST Standard ServiceNow connectors 
(custom) 

Standard-based; open 
implementations available. 

DMTF Standard Redfish API No proprietary restrictions. 

 

B.4 Architectural Mapping 

Logical Architecture Layer Associated Components 

Orchestration and Deployment Gardener, Kubernetes, Greenhouse 

Telemetry and Ingestion Telegraf, OpenTelemetry Collector, SNMP 
Libraries 

Storage Prometheus, Thanos, OpenSearch 

Visualization Perses, OpenSearch 

Asset Management and CMDB NetBox 

Alerting and Incident Detection Prometheus - AlertManager 

Ticketing Integration REST API (open-source connectors) 

Optional Hardware API Layer Redfish API Clients 

 

B.5 Sustainability and Interoperability Alignment 
Consistent with sustainability objectives (Chapter 6.7): 

• Open governance and extensibility across all components. 
• Avoidance of vendor-locked ecosystems. 
• Lightweight, scalable telemetry pipelines reduce operational overhead. 
• Compatibility with energy efficiency and regulatory reporting frameworks. 



 

   
 

B.6 Versioning and Change Management 
• Platform components are maintained via Greenhouse plugin structure 
• Upgrades must preserve open-source compliance and be tested against 

regression suites. 
• Change requests related to core components must follow governance processes 

(outlined in Section 4.7) 

 
  



 

   
 

Appendix C - References and Source Materials 
This appendix enumerates the principal references, standards, regulatory frameworks, 
and project documentation sources that informed the extension of Aperio Reference 
Architecture in the form of Data Center Observability Platform Reference Architecture. It 
serves to acknowledge foundational materials and provide transparency regarding the 
basis for design decisions, regulatory mappings, and operational models discussed 
throughout the blueprint. 

C.1 Regulatory and Policy References 

Title Source / Publisher Relevance 

Directive (EU) 
2023/1791 (Energy 
Efficiency Directive) 

European Union 

Legal driver for mandatory 
energy and efficiency reporting 
by data centers exceeding 
500kW installed IT power. 

Delegated Regulation 
(EU) 2024/1364 
(Annex I KPIs) 

European Union 
Specifies detailed reporting 
requirements for sustainability 
KPIs in data center operations. 

Regulation (EU) 
2019/424 (Ecodesign 
Regulation for servers 
and storage) 

European Union 

Establishes minimum efficiency 
standards for data center 
equipment procurement and 
operation. 

Climate Neutral Data 
Centre Pact Industry Self-Regulation 

Voluntary commitments 
towards achieving carbon 
neutrality and sustainability 
targets by 2030. 

EU Code of Conduct 
for Data Centre Energy 
Efficiency 

European Commission 
Best practices framework for 
energy-efficient data center 
design and operation. 

 

C.2 Open Standards and Technology Specifications 

Title Source / Publisher Relevance 

Apeiro Reference 
Architecture 

SAP SE / NeoNephos 
Foundation 

Blueprint for Cloud-Edge 
Continuum 

Gardener Project 
Documentation NeoNephos Foundation Management and orchestration 

of Kubernetes clusters at scale. 



 

   
 

Greenhouse Project 
Documentation NeoNephos Foundation 

Cloud operation platform for 
distributed Kubernetes 
infrastructure. 

Kubernetes 
Documentation 

Cloud Native Computing 
Foundation (CNCF) 

Foundation for container 
orchestration within the 
observability platform. 

OpenTelemetry 
Specification 

OpenTelemetry Project 
(CNCF) 

Telemetry collection framework 
for metrics, logs, and traces. 

NetBox 
Documentation NetBox Community CMDB and infrastructure 

metadata management. 

Prometheus 
documentation 

Cloud Native Computing 
Foundation (CNCF) 

Metrics collection and storage, 
alerting 

OpenSearch 
documentation Linux foundation Data search, analysis and 

visualization 

Thanos 
documentation 

Cloud Native Computing 
Foundation (CNCF) 

Prometheus long term metrics 
storage 

Perses documentation Cloud Native Computing 
Foundation (CNCF) Visualization dashboards 

Telegraf 
Documentation InfluxData 

SNMP telemetry ingestion agent 
for environmental and power 
monitoring. 

SNMP Protocol 
Specifications (RFC 
1157, RFC 3411) 

IETF (Internet Engineering 
Task Force) 

Protocols enabling telemetry 
polling and traps from PDUs 
and environmental sensors. 

Redfish API Standard DMTF (Distributed 
Management Task Force) 

Open standard for secure and 
scalable hardware telemetry 
acquisition. 

Open Compute 
Project (OCP) 
Documentation 

Open Compute Project 
Foundation 

Sustainability, modularity, and 
transparency principles for 
hardware and infrastructure 
design. 

 

C.3 Methodological References and Community Practices 

Title Source / Publisher Relevance 



 

   
 

Cloud reference 
architecture Neo Nephos Foundation General guidelines for building 

cloud infrastructure 

Best Practices for 
Observability 
Architectures 

CNCF Observability 
Working Group 

Conceptual alignment for 
defining observability layers, 
telemetry processing, and 
stakeholder needs. 

Infrastructure as Code 
and CI/CD Practices 

GitHub Actions 
Documentation 

Automation framework for 
infrastructure deployment, 
onboarding, and configuration 
drift monitoring. 

OpenTelemetry API 
Reference 

OpenTelemetry Project 

Provides detailed API 
documentation for 
implementing observability in 
applications. 

Gardener Architecture 
Documentation Gardener Project 

Offers insight into the 
architecture and operation of 
Gardener for Kubernetes cluster 
management. 

NetBox Labs 
Documentation NetBox Labs 

Detailed documentation on 
NetBox  features, deployment, 
and integration capabilities. 

Telegraf Configuration 
Guide InfluxData 

Instructions for configuring 
Telegraf for various data 
collection scenarios. 

Redfish Specification 
DSP0266 

DMTF 
Defines the Redfish standard for 
hardware management using 
RESTful APIs. 

Open Compute 
Project Specifications 

Open Compute Project 
Foundation 

Provides hardware 
specifications and guidelines 
promoting open and efficient 
data center designs. 

Data Center 
Standards and Guides ASHRAE 

Set of guidelines related to 
thermal conditions withing data 
centers 

 

 


